金属学报, 2024, 60(7): 915-925 DOI: 10.11900/0412.1961.2023.00015

研究论文

1Cr22Mn16N高氮奥氏体不锈钢塑性变形连接中界面组织演化及愈合机制

杨瑞泽1,2,3, 翟汝宗1,2, 任少飞1,2, 孙明月,1,2, 徐斌1,2, 乔岩欣,3, 杨兰兰3

1 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016

2 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016

3 江苏科技大学 材料科学与工程学院 镇江 212003

Evolution and Healing Mechanism of 1Cr22Mn16N High Nitrogen Austenitic Stainless Steel Interface Microstructure During Plastic Deformation Bonding

YANG Ruize1,2,3, ZHAI Ruzong1,2, REN Shaofei1,2, SUN Mingyue,1,2, XU Bin1,2, QIAO Yanxin,3, YANG Lanlan3

1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

2 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

3 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

通讯作者: 孙明月,mysun@imr.ac.cn,主要从事特殊钢与大锻件材料及先进控形控性技术研究;乔岩欣,yxqiao@just.edu.cn,主要从事金属腐蚀与防护研究

责任编辑: 毕淑娟

收稿日期: 2023-01-09   修回日期: 2023-03-22  

基金资助: 国家重点研发计划项目(2018YFA0702900)
国家自然科学基金项目(52173305)
国家自然科学基金项目(52101061)
国家自然科学基金项目(52233017)
国家自然科学基金项目(52203384)

Corresponding authors: SUN Mingyue, professor, Tel:(024)83971018, E-mail:mysun@imr.ac.cn;QIAO Yanxin, professor, Tel:(0511)84401184, E-mail:yxqiao@just.edu.cn

Received: 2023-01-09   Revised: 2023-03-22  

Fund supported: National Key Research and Development Program of China(2018YFA0702900)
National Natural Science Foundation of China(52173305)
National Natural Science Foundation of China(52101061)
National Natural Science Foundation of China(52233017)
National Natural Science Foundation of China(52203384)

作者简介 About authors

杨瑞泽,男,1997年生,硕士

摘要

为解决高氮奥氏体不锈钢焊接难题,以高氮奥氏体不锈钢1Cr22Mn16N为实验材料,采用塑性变形连接技术实现了1Cr22Mn16N的连接。通过OM、EBSD和TEM等手段研究了不同变形参数下的连接界面组织演化,讨论了界面愈合机理,并采用拉伸实验评估了连接接头的结合强度。研究结果表明,随着变形量的增加和变形温度的升高,连接界面的结合程度显著提高。当变形温度达到1200℃,变形量为40%时,连接界面结合较好,其拉伸性能达到基体同等水平。在塑性变形连接过程中,由于热力耦合促使原始粗大的晶粒细化,在连接界面处发生不连续动态再结晶,随后再结晶晶粒核心通过消耗变形晶粒中的应变储能发生长大,诱导连接界面弯曲,晶界迁移;与此同时,位错在应力的作用下堆积和缠结,在界面附近的变形晶粒内形成了大量亚晶界,随着应力的增大发生了连续动态再结晶,使亚晶界转变成大角度晶界,促进了连接界面愈合。高氮奥氏体不锈钢1Cr22Mn16N塑性变形连接过程中,在连续动态再结晶与不连续动态再结晶的协同作用下实现了界面的连接。

关键词: 高氮奥氏体不锈钢; 塑性变形连接; 动态再结晶

Abstract

High nitrogen austenitic stainless steels (HNASSs) are widely used for their good wear resistance and high strength, plasticity, and corrosion resistance. Among these steels, 1Cr22Mn16N HNASS improves the cost effectiveness because of the incorporation of a N element in place of the expensive Ni element. In addition, the overall mechanical properties of the steel are further improved because of the solid solution-strengthening effect of the N element. However, the traditional welding methods such as arc welding, tungsten gas shielded welding, and friction stir welding are not suitable for 1Cr22Mn16N HNASS welding because of the different solubility of N in the liquid and solid phases. N easily spills out during the welding process, which considerably degrades the mechanical properties of the welded joints. Therefore, a new welding method needs to be explored to solve the problems in 1Cr22Mn16N welding. In this work, the bonding technology of plastic deformation was introduced to solve the poor performance problems of 1Cr22Mn16N HNASS welded joints. The experiments were conducted through the Glebble 3500 thermomechanical simulation in the temperature range of 1050-1250oC and a strain range of 10%-40% with a strain rate of 0.1 s-1. The microstructure evolution of the bonding interface was characterized and investigated using OM, EBSD, and TEM; the interface healing mechanism was discussed, and the bonding strength of the joint was evaluated by tensile test. The results show that the bonding level of the interface substantially increases with the increase in deformation and temperature. When the deformation temperature reached 1200oC and the strain reached 40%, the mechanical properties of the bonding interface reached up to the same level as the matrix. During the process of deformation, discontinuous dynamic recrystallization (DDRX) occurred at the interface because of thermomechanical coupling; meanwhile, dislocations accumulated and entanglement occurred under the action of stress, forming a large number of subgrain boundaries within the original grain boundaries near the interface, which, lead to continuous dynamic recrystallization (CDRX). The healing of the interface was achieved by the synergistic effect of CDRX and DDRX.

Keywords: high-nitrogen austenitic stainless steel; plastic deformation bonding; dynamic recrystallization

PDF (4134KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

杨瑞泽, 翟汝宗, 任少飞, 孙明月, 徐斌, 乔岩欣, 杨兰兰. 1Cr22Mn16N高氮奥氏体不锈钢塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2024, 60(7): 915-925 DOI:10.11900/0412.1961.2023.00015

YANG Ruize, ZHAI Ruzong, REN Shaofei, SUN Mingyue, XU Bin, QIAO Yanxin, YANG Lanlan. Evolution and Healing Mechanism of 1Cr22Mn16N High Nitrogen Austenitic Stainless Steel Interface Microstructure During Plastic Deformation Bonding[J]. Acta Metallurgica Sinica, 2024, 60(7): 915-925 DOI:10.11900/0412.1961.2023.00015

高氮奥氏体不锈钢(HNASS)具有高强度、高塑性、高耐蚀性和耐磨性等特点[1],已广泛应用于军工、海工装备、石油化工等领域[2~4]。其中,1Cr22Mn16N HNASS将N元素引入其中,代替了昂贵的Ni元素,从而提升了该钢的性价比[3~6],同时利用N元素的固溶强化作用,使该钢的综合力学性能得到了进一步提升。但由于N元素在液相和固相的溶解度不同,导致其易在焊接过程中溢出,从而显著降低该钢焊接部位的N含量并易在其中形成气孔,严重恶化焊接接头的力学性能[7]

高氮奥氏体不锈钢的焊接问题制约了其应用,因此长久以来备受关注。Mohammed等[8]的研究表明,在电弧焊过程中,焊缝中N的损失和气孔导致了力学性能和耐蚀性的下降。为了减少焊缝中N元素溢出,赵琳等[9]研究了不同保护气体的激光焊,认为随保护气体中N含量的增加,焊缝中的N含量增加,焊缝中的气孔减少。Kamiya等[10]研究了N含量分别为0.51%和0.78% (质量分数,下同)的HNASS钨极气体保护焊(GTAW)中微气孔的形成,认为N含量越高的HNASS熔合线附近产生的微气孔越多,导致焊接接头软化。Qiang和Wang[11]采用双面同步自生GTAW焊接HNASS,结果表明,在保护气体中加入N2可以有效抑制焊接接头的N元素损失,使焊缝中的N含量提高到1.25%。但是,随着N2比例的增加,电弧和飞溅的不稳定性变得更加严重。除此之外,传统的搅拌摩擦焊虽然能得到较高抗拉强度(母材的70%)的接头,但存在焊缝软化和N元素析出等问题[12],难以满足日益增长的性能要求。因此需要探究一种新型焊接方法解决1Cr22Mn16N在焊接方面出现的问题。

塑性变形连接是在扩散焊的基础上,对合金施加较大的应变,在热力耦合的作用下使界面原子发生互扩散,从而实现变形连接,该技术可避免传统焊接工艺造成的凝固裂纹及N气孔缺陷。其主要应用于钛合金、高温合金等的焊接领域,并取得了良好的成果[13,14]。Zhou等[15]研究了14YWT合金的塑性变形连接,表明提高温度和增加变形量均有助于界面愈合。Xie等[16,17]研究了塑性变形连接界面氧化物对316LN不锈钢连接效果的影响,表明界面处的氧化物会随着后续保温时间的延长分解为纳米级的Al2O3颗粒,弥散分布在界面附近,对界面性能没有影响。Zhang等[18]研究了铜合金的塑性变形连接,发现界面晶界的迁移有利于界面愈合且不存在有害相。江海洋等[19]研究了保温时间对7075铝合金热变形连接界面的影响,发现随着保温时间的延长有助于再结晶晶粒跨越界面,实现连接。任少飞等[20]研究了Ni-Co基高温合金的塑性变形连接,发现在连续动态再结晶与不连续动态再结晶的协同作用下使晶粒细化,并且促进晶界的迁移,实现界面愈合。上述结果表明,通过塑性变形连接有望解决1Cr22Mn16N HNASS的焊接问题。

在塑性变形连接过程中动态再结晶对界面愈合起决定性作用,而变形温度和变形量对动态再结晶的影响较大。降低变形温度,会减小材料层错能,升高流变应力,不利于再结晶的发生[21,22]。并且在低温变形过程中,产生的位错难以通过滑移而湮灭,动态软化效果减弱,导致位错密度增大[23~27]。增大变形量则会增加再结晶比例,从而直接影响塑性变形连接效果。所以有必要探究变形温度和变形量对1Cr22Mn16N HNASS连接界面再结晶的影响,并阐述其界面愈合机理。

本工作以1Cr22Mn16N HNASS为研究对象,研究了不同变形参数下的界面组织演变,讨论了塑性变形过程中的界面愈合机理,并评估了界面结合强度,以期为后续工程化应用奠定基础。

1 实验方法

实验材料采用40 kg加压感应炉进行熔炼,将其锻造成电渣重熔的电极,使用DZ622渣系对其进行加压电渣重熔,渣层8 cm,工作电压为37~38 V,电流密度为2.3~2.4 kA。经过加压电渣重熔后的1Cr22Mn16N钢锭化学成分(质量分数,%)为:Cr 21.3,Mn 14.4,Ni 1.78,C 0.014,Si 0.47,N 0.72,Fe余量。最后将电渣锭锻造成40 mm × 40 mm × 120 mm的长棒,水冷至室温。

用线切割从锻造后的钢锭上切取8 mm × 8 mm × 10 mm的方形试样。将2个试样连接面用2000号SiC砂纸进行机械打磨,用于清除试样表面的氧化物,将打磨后的样品放到酒精中保存防止氧化。随后将2个试样取出吹干,用导电胶固定并在固定好的试样侧面靠近连接面处焊接K型热电偶丝,如图1a所示。为了减少试样与机器之间的摩擦,在试样两端粘上Ta片和石墨片。将处理好的样品在Gleeble 3500热力模拟试验机中进行塑性变形实验,塑性变形连接的应变速率为0.1 s-1,变形温度为1050~1250℃ (间隔50℃),变形量为10%、20%、30%和40%,真空度为40 Pa。以5℃/s的速率加热试样至实验温度,保温150 s使试样均匀受热,然后进行塑性变形连接,变形连接前后的样品尺寸如图1b所示。

图1

图1   实验方法及样品尺寸示意图

Fig.1   Schematics of the experimental method and sample size (unit: mm)

(a) experimental method of plastic deformation bonding (b) samples before and after deformation

(c) experimental method of tensile butt-joint (The top schematic shows a butt-joint specimen; the bottom schematic shows the sample of the base material)

(d) tensile sample before compression


将压缩后的试样用线切割从中间切开(平行于压缩方向),将切开面进行机械打磨、抛光。处理后的试样用1 g K2MnO4 + 9 mL H2SO4 + 90 mL H2O加热腐蚀出晶界,并用10%的H2C2O4电解腐蚀,电压为3 V,时间为5 s。通过Lab.Al金相显微镜(OM)观察样品中心区域(均匀变形区)组织,通过MIRA3型扫描电镜(SEM)及其附带的电子背散射衍射(EBSD)探头对界面处的微观组织进行表征,并通过Image-pro plus对其平均晶粒尺寸进行统计。EBSD样品通过电解抛光制备,抛光液为10 mL HClO4 + 90 mL CH3CH2OH,电解电压为30 V,时间为15 s。EBSD扫描步长为0.5 μm, EBSD实验数据用Channel 5软件处理。采用JEM-2100P透射电镜(TEM)对连接界面进行观察,样品手动打磨到50 μm,再双喷减薄,双喷液为10 mL HClO4 + 90 mL CH3CH2OH,减薄参数为电压110 V,温度-30℃。

为了评估塑性变形连接接头性能,采用TSE 105D微机控制电子万能试验机对接头的室温力学性能进行测试。图1c上方为塑性变形连接对接棒示意图,试样尺寸如图1d所示,将2个试样对接后进行塑性变形连接;图1c下方为基体一体棒示意图,对接棒和一体棒在Gleeble 3500热力模拟试验机中经过相同处理后取出。为了防止界面处氧含量过高,将对接后的试样封管并在1200℃保温24 h,取出后放入水中冷却至室温。将保温后样品加工成总长度60 mm (平行段长度为30 mm),直径5 mm的标准拉伸棒。

2 实验结果及分析

图2为1Cr22Mn16N HNASS基体组织的反极图(IPF)。1Cr22Mn16N高氮钢为奥氏体组织,具有较低的层错能(SFE) [6]。样品晶粒尺寸均匀,取向随机,经过统计样品平均晶粒尺寸为36.9 μm。

图2

图2   1Cr22Mn16N高氮奥氏体不锈钢(HNASS)显微组织反极图(IPF)

Fig.2   Inverse pole figure (IPF) of microstructure of 1Cr22Mn16N high nitrogen austenitic stainless steel (HNASS)


2.1 塑性变形连接工艺对塑性变形连接界面组织的影响

2.1.1 不同变形温度下界面的演变

图3为1Cr22Mn16N HNASS在应变速率0.1 s-1、变形量为20%、不同变形温度下的OM像。可见,当变形温度较低时界面附近晶界发生弓弯,但是连接界面仍趋于平直(图3ab)。随着变形温度升到1150℃,连接界面发生弯曲弓出,并有细小晶粒产生,晶粒尺寸不均匀(图3c)。当温度达到1200℃,界面处细小的晶粒增多,晶粒尺寸增加且趋于均匀,界面迁移[28~30],部分界面已由细小的晶粒取代(图3d)。1250℃时,界面消失但是晶粒显著长大(图3e)。上述结果表明,随着变形温度升高,连接界面开始弯曲,并向另一侧弓出,伴有细小晶粒出现;在低温下塑性变形连接界面明显,表明结合效果较差,而高温下晶粒长大过快,会影响界面性能[20],在1200℃时,原本明显的界面部分由细小的晶粒取代,并且晶粒尺寸趋于均匀。

图3

图3   应变速率为0.1 s-1、变形量为20%、不同变形温度下1Cr22Mn16N HNASS界面处的OM像

(a) 1050oC (b) 1100oC (c) 1150oC (d) 1200oC (e) 1250oC

Fig.3   OM images of interface in 1Cr22Mn16N HNASS at different deformation temperatures with 0.1 s-1 strain rate and 20% strain


2.1.2 不同变形量下界面的演变

图4a~d为1Cr22Mn16N HNASS 在1200℃时不同变形量的OM像。如图4ab所示,变形量较小时界面清晰可见,出现细小的晶粒并且开始出现弯曲现象。随着变形量的增加,连接界面部分晶界开始模糊,如图4c所示,界面附近原始晶界呈现锯齿状并观察到细小晶粒[31~33]。当变形量增加到40%时,应变诱导晶界迁移[16],原始连接界面已经完全被再结晶晶粒取代,界面愈合(图4d)。图4e为样品在塑性变形连接过程中平均晶粒尺寸统计图。可见,变形量小于20%时,样品晶粒尺寸随着变形量的增大逐渐减小,这表明在这个过程中样品组织可能存在动态再结晶[34];当变形量超过20%时,晶粒尺寸随着变形量的增加逐渐长大趋于均匀(与原始晶粒尺寸接近),这是因为晶界缺乏第二相粒子的钉轧作用,导致再结晶晶粒快速长大[31]。综上所述,变形初期原始粗大的晶粒得到细化,随着变形量的增加界面处完全由细小晶粒代替,变形量为40%时再结晶达到稳态,再结晶晶粒长大,尺寸趋于均匀。

图4

图4   1200℃时不同变形量的1Cr22Mn16N HNASS界面处的OM像和平均晶粒尺寸图

Fig.4   OM images of interface in 1Cr22Mn16N HNASS at 1200oC and deformations of 10% (a), 20% (b), 30% (c), and 40% (d); and average grain size diagram (e)


2.2 塑性变形连接界面性能

2.2.1 界面结合强度

通过图4d可知,当变形温度为1200℃、变形量40%时,1Cr22Mn16N HNASS塑性变形连接取得良好的效果。为了进一步评价接头连接效果,对20%和40%变形量的对接棒进行拉伸实验,并采用相同变形量的母材进行对照实验。如图5所示,变形量为20%的接头抗拉强度仅为871 MPa,延伸率仅为39%,延伸率远低于母材(50.5%)。这表明界面处未完全连接,所以强度和延伸率远低于母材。变形量为40%的接头其抗拉强度达到917 MPa,延伸率达到48%,母材在此变形量下抗拉强度为893 MPa,延伸率为51%。这表明随着变形量的增加界面结合强度增加,当变形量达到40%时,连接接头的性能达到与母材同等水平。这是由于在变形初期氧化膜的存在阻碍了界面的接触,随着变形量的增加,氧化膜在应力的作用下破碎并且部分分解,裸露出来的金属相互之间接触,有利于界面的愈合[16,17]。其次,在应力的作用下界面处晶界发生迁移并形成细小的再结晶晶粒,随着应变的增加再结晶晶粒核心数量增多并长大,促进了原始界面的弯曲和愈合,界面最后均由细小的再结晶晶粒代替,提高了界面的结合强度[35~37]。因此,当变形量增大到40%时,连接界面愈合程度较高,强韧性达到与母材同等水准。

图5

图5   20%和40%变形连接接头与母材的室温拉伸曲线

Fig.5   Room temperature tensile curves of the bonding joints (BJs) and base materials (BMs) with deformations of 20% and 40%


2.2.2 接头拉伸断口形貌

图6为20%和40%变形量下接头与母材的断口形貌。图6a为变形量20%的连接接头拉伸断口的微观和宏观(插图)形貌,由于在1200℃、变形量为20%时塑性变形连接界面仅有部分被细小晶粒取代(图4b),导致其拉伸断口剪切唇区域出现不均匀的颈缩,且未观察到明显纤维区和放射区,如图6a插图中箭头所示。对比图6a和b可见,20%变形量母材断口纤维区为细小均匀的韧窝,与图5中该样品延伸率较高相对应。随着变形量的增加,变形量40%的样品强韧性达到与母材同等水准,对比图6cd可见,对接接头微观断口与母材相似,均为小而浅的韧窝,并且宏观断口形貌均出现均匀颈缩,与图5中的性能相对应。塑性变形连接在1200℃、变形量40%时效果最好。

图6

图6   20%和40%变形连接接头与母材的断口形貌

Fig.6   Tensile fracture morphologies of BJs (a, c) and BMs (b, d) at deformations of 20% (a, b) and 40% (c, d) (Insets show the macrostructures of fracture)


2.3 变形连接过程中的再结晶行为

2.3.1 不连续动态再结晶行为

N的引入会使材料延后发生动态再结晶(DRX),在塑性变形过程中使位错攀移和交滑移受到限制,且动态回复(DRV)能力较差[38],因此在塑性连接过程中DRX是主要的软化机制。图7为塑性变形温度1200℃时,不同变形量下界面组织的IPF、几何必需位错(GND)图及对应的晶粒取向(GOS)图。从图中可以看出,所有变形量的样品均存在大量的小角度晶界(LAGBs)和大角度晶界(HAGBs)。

图7

图7   塑性变形温度1200℃时,不同变形量下界面组织的IPF、局部取向差(GND)图及对应的晶粒取向(GOS)图

Fig.7   IPFs (a, d, g, j),geometrically necessary dislocation (GND) maps (b, e, h, k), and grain orientation spread (GOS) maps (c, f, i, l) of interface microstructures under deformations of 10% (a-c), 20% (d-f), 30% (g-i), and 40% (j-l) at 1200oC (CDRX—continuous dynamic recrystallization, DDRX—discontinuous dynamic recrystallization, LAGB—low angle grain boundary, MAGB—middle angle grain boundary, HAGB—high angle grain boundary)


图7a为变形量10%连接界面组织的IPF,结合图7b (GND图)观察到界面趋于平直,位错在界面附近不断积累形成大量LAGBs[20]。在小变形量下界面表面氧化膜破碎,表面接触形成了结合面(图7a)。这种现象可以认为是位错堆积形成的非稳定的HAGBs[20]。从图7de (变形量20%)可以看出,在GND的作用下界面发生弯曲,弓出处为再结晶提供形核点,界面两侧存在位错密度梯度,并且界面附近的晶界在应力的作用下迁移,向着位错密度高的一侧迁移并消耗了储存能[32]。观察图7gh (变形量30%)发现,连接界面消失,原本晶界处弯曲的部分脱离形核,形成了许多细小的再结晶晶粒,再结晶晶粒内部无位错,即材料通过再结晶的方式消除形变基体中的位错 [33],但是晶粒尺寸不均匀。从图7j和k看出,随着变形量增加到40%,再结晶晶粒长大并且尺寸趋于均匀。观察到界面附近的晶界内仍然存在少量位错,这是由于长大的再结晶晶粒再次变形所致,可以认为此时发生完全动态再结晶,界面完全消失[38]

GOS是晶粒中每个点与晶粒平均取向之间的平均取向差,一般认为< 2°为再结晶晶粒[39]。从图7中不同变形量的GOS图看出,在10%变形量时,2个塑性变形连接样品表面接触形成了一个新的不稳定的界面[16],由于应力较小,导致大部分界面平直,仅在界面两边形成了少量细小的再结晶晶粒;当变形量增加到20%时,再结晶晶粒增多,原本平直的界面弓弯;变形量到30%时,由于再结晶未达到稳态,再结晶晶粒在长大的同时形成了新的小再结晶晶粒;随着变形量增加到40%,再结晶达到稳态,晶粒尺寸长大到与原始晶粒相似。

2.3.2 连续动态再结晶行为

在连续动态再结晶(CDRX)机制中,由于形变引起的位错不断积累,导致亚晶界取向差的增加,从而形成了新的晶粒[35]。在CDRX过程中,中等角度晶界(MAGBs) (10°~15°)向HAGBs转变,并且不连续的HAGBs是发生CDRX的显著特征[30]。从图7的GOS图可以看出,有部分再结晶晶粒的HAGBs与LAGBs/MAGBs相连,不连续的HAGBs说明在变形连接过程中发生了CDRX。不同变形量的试样中大小角度晶界占比如图8所示。可见,变形量从10%增加到40%时,MAGBs先减小后不断增多,此时LAGBs不断向MAGBs转变,但是MAGBs向HAGBs的转变速率低于前者,说明在塑性变形连接过程中发生了CDRX。如图7c、f、i、l中黄色箭头所指,不同变形量的样品均发生了CDRX。在小变形量(10%)下界面附近发生CDRX,有助于晶粒的细化,随着变形量的增加,在界面处也发生了CDRX,有助于界面的愈合。综上所述,在塑性变形连接过程中CDRX也起到了重要作用。

图8

图8   不同变形量样品的大小角度晶界占比图

Fig.8   Misorientation angle distributions of samples under different deformations at 1200oC (Inset shows the magnified MAGB occupancy)


一般认为层错能对材料再结晶方式有很大影响,在低层错能和中等层错能材料中发生不连续动态再结晶(DDRX),在高层错能材料中发生CDRX,用来消除位错和亚晶界等缺陷[40]。据报道[41],随着N含量的增加,层错能增加,导致1Cr22Mn16N在塑性变形连接过程中再结晶方式与14YWT合金[15]和Ni-Co基高温合金[20]再结晶方式不同,由界面处仅发生DDRX转变为DDRX和CDRX同时发生。

2.3.3 界面微观组织

图9为1200℃、变形量20%下连接界面微观组织的TEM像。从图9a中可以看出,在小变形量下,界面附近有新的再结晶晶粒,晶粒内干净,并且再结晶晶粒有助于界面向另一侧发生弓弯,这是发生DDRX的现象,与图7a得到的结果一致。如图9b红色箭头所示,大量位错缠结形成亚晶界,在应力的不断作用下亚晶界旋转形成HAGBs,这是发生CDRX的过程,与图7b中显示的发生CDRX结果一致。

图9

图9   变形温度为1200℃、变形量20%下界面微观组织的TEM像

Fig.9   TEM images of interface structure at 1200oC and 20% strain

(a) DRX grain (b) subgrain boundary


2.4 塑性变形连接界面愈合机制

图10为塑性变形连接过程中界面的愈合机理示意图。本工作中样品初始晶粒尺寸分布均匀,如图10a所示。如图10b所示,变形初期在热力耦合的作用下使样品产生变形,晶粒尺寸变小,塑性变形连接界面附近的晶界发生弯曲弓出,位错开始堆积缠结,形成中小角度晶界。当位错堆积到一定程度,在界面附近生成了少量的DDRX和CDRX,在变形初期,CDRX起到细化晶粒的作用。如图10c所示,随着变形量的增加,DDRX晶粒增多,位错密度增加,位错堆积。根据之前的分析[33],在塑性变形连接过程中通过再结晶的方式消除形变过程中基体的位错,由于在再结晶晶粒生成的过程中导致晶界的迁移,出现界面开始向位错密度较大的一侧弓出的现象。如图10d所示,随着变形量的增加,DDRX晶粒的体积分数增多,并且变形晶粒中LAGBs逐渐转变成HAGBs[32],在塑性变形连接界面处形成CDRX,CDRX同样起到促进界面愈合的作用。如图10e所示,变形量的继续增加使位错减少,DDRX晶粒不断形核长大,界面处也形成了CDRX,DDRX与CDRX共同作用使界面愈合。上述分析结果表明,在塑性变形连接过程中,首先CDRX起到晶粒细化的作用,随着应力的持续作用,再结晶晶粒体积分数增加,塑性变形连接界面最终由再结晶晶粒代替,实现界面愈合。

图10

图10   塑性变形连接界面愈合机理示意图

Fig.10   Schematics of healing mechanism of bonding interface during plastic deformation bonding

(a) deformation (b) grain boundary bow (c) dislocation accumulation

(d) increased dynamic recrystallization (DRX) (e) interface bonding


3 结论

(1) 提高变形温度有助于1Cr22Mn16N 高氮奥氏体不锈钢发生再结晶,促进变形连接界面的愈合。当变形温度为1250℃时,晶粒尺寸较大,较适合的连接温度为1200℃。

(2) 当变形温度为1200℃时,随着变形量的不断增加,原始晶粒发生细化并趋于均匀。变形量达到40%时,连接界面处再结晶晶粒长大趋于均匀。此时样品界面愈合且强韧性达到基体同等水准。

(3) 在塑性变形连接过程中,由于热力耦合作用,界面处发生连续动态再结晶和不连续动态再结晶。首先连续动态再结晶在变形初期起到细化晶粒的作用,有助于晶界的迁移。随后界面处不连续动态再结晶形核长大,促进了界面的愈合。在连续动态再结晶和不连续动态再结晶协同作用下原始界面由细小的再结晶晶粒代替,实现了界面的愈合。

参考文献

Zhang X Y, Zhou Q, Wang K H., et al.

Study on microstructure and tensile properties of high nitrogen Cr-Mn steel processed by CMT wire and arc additive manufacturing

[J]. Mater. Des., 2019, 166: 107611

[本文引用: 1]

Gavriljuk V G, Berns H. High Nitrogen Steels [M]. Berlin: Springer, 1999: 135

[本文引用: 1]

Lang Y P, Zhou Y, Rong F, et al.

Hot working of high nitrogen austenitic stainless steel

[J]. J. Iron Steel Res. Int., 2010, 17: 45

[本文引用: 1]

Bott A H, Pickering F B, Butterworth G J.

Development of high manganese high nitrogen low activation austenitic stainless steels

[J]. J. Nucl. Mater., 1986, 141-143: 1088

[本文引用: 1]

Simmons J W.

Overview: High-nitrogen alloying of stainless steels

[J]. Mater. Sci. Eng., 1996, A207: 159

Harzenmoser M.

Welding of high nitrogen steels

[J]. Mater. Manuf. Processes, 2004, 19: 75

[本文引用: 2]

Du Toit M, Pistorius P C.

Nitrogen control during autogenous arc welding of stainless steel—Part 1: Experimental observations

[J]. Trans. Weld. J.., 2003, 82:219

[本文引用: 1]

Mohammed R, Reddy G M, Rao K S.

Welding of nickel free high nitrogen stainless steel: Microstructure and mechanical properties

[J]. Def. Technol., 2017, 13: 59

DOI      [本文引用: 1]

High nitrogen stainless steel (HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance. Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties. The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding (SMAW), gas tungsten arc welding (GTAW), electron beam welding (EBW) and friction stir welding (FSW) processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds. Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds. Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains. © 2016 The Authors

Zhao L, Tian Z L, Peng Y, et al.

Laser welding of high nitrogen steel 1Cr22Mn16N Ⅲ. Microstructure and mechanical properties of welding heat-affected zone

[J]. Trans. China Weld. Inst., 2007, 28(12): 26

[本文引用: 1]

赵 琳, 田志凌, 彭 云 .

1Cr22Mn16N高氮钢的激光焊接Ⅲ.焊接热影响区组织和性能

[J]. 焊接学报, 2007, 28(12): 26

[本文引用: 1]

Kamiya O, Chen Z W, Kikuchi Y.

Microporosity formation in partially melted zone during welding of high nitrogen austenitic stainless steels

[J]. J. Mater. Sci., 2002, 37: 2475

[本文引用: 1]

Qiang W, Wang K H.

Shielding gas effects on double-sided synchronous autogenous GTA weldability of high nitrogen austenitic stainless steel

[J]. J. Mater. Process. Technol., 2017, 250: 169

[本文引用: 1]

Zhang H, Wan D, Xue P, et al.

Research advances on homogenization manufacturing of heavy components by metal additive forging

[J]. J. Mater. Sci. Technol., 2018, 34: 2183e8

DOI      [本文引用: 1]

The microstructure and properties of water-cooled and air-cooled friction stir welded (FSW) ultra-high strength high nitrogen stainless steel joints were comparatively studied. With additional rapid cooling by flowing water, the peak temperature and duration at elevated temperature during FSW were significantly reduced. Compared to those in the air-cooled joint, nugget zone with finer grains (900 nm) and heat affected zone with higher dislocation density were successfully obtained in the water-cooled joint, leading to significantly improved mechanical properties. The wear of the welding tool was significantly reduced with water cooling, resulting in better corrosion resistance during the immersion corrosion test.

Sun M Y, Xu B, Xie B J, et al.

Research progress of homogenized construction and forming of heavy forgings

[J]. Chin. Sci. Bull., 2020, 65: 3043

[本文引用: 1]

孙明月, 徐 斌, 谢碧君 .

大锻件均质化构筑成形研究进展

[J]. 科学通报, 2020, 65: 3043

[本文引用: 1]

Zhang J Y, Xu B, Tariq N H, et al.

Microstructure evolutions and interfacial bonding behavior of Ni-based superalloys during solid state plastic deformation bonding

[J]. J. Mater. Sci. Technol., 2020, 46: 1

DOI      [本文引用: 1]

As an advanced solid state bonding process, plastic deformation bonding (PDB) is a highly reliable metallurgical joining method that produces significant plastic deformation at the bonding interface of welded joints through thermo-mechanical coupling. In this study, PDB behavior of IN718 superalloy was systematically investigated by performing a series of isothermal compression tests at various processing conditions. It was revealed that new grains evolved in the bonding area through discontinuous dynamic recrystallization (DDRX) at 1000-1150 °C. Electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) results revealed that the bonding of joints is related with interfacial grain boundary (IGB) bulging process, which is considered as a nucleation process of DRXed grain under different deformation environments. During recrystallization process, the bonded interface moved due to strain-induced boundary migration (SIBM) process. Stored energy difference (caused by accumulation of dislocations at the bonding interface) was the dominant factor for SIBM during DRX. The mechanical properties of the bonded joints were dependent upon the recrystallized microstructure and SIBM ensued during PDB.

Zhou L Y, Feng S B, Sun M Y, et al.

Interfacial microstructure evolution and bonding mechanisms of 14YWT alloys produced by hot compression bonding

[J]. J. Mater. Sci. Technol., 2019, 35: 1671

DOI      [本文引用: 2]

Hot compression bonding was first used to join oxide-dispersion-strengthened ferrite steels (14YWT) under temperatures of 750-1100°C with a true strain range of 0.11-0.51. Subsequently, the microstructure evolution and mechanical properties of the joints were characterized, revealing that the 14YWT steels could be successfully bonded at a temperature of at least 950 °C with a true strain of 0.22, without degrading the fine grain and nanoparticle distribution, and the presence of inclusions or micro-voids along the bonding interface. Moreover, the joints had nearly the same tensile properties at room temperature and exhibited a similar fracture morphology with sufficient dimples compared to that of the base material. An electron backscattered diffraction technique and transmission electron microscopy were systematically employed to study the evolution of hot deformed microstructures. The results showed that continuous dynamic recrystallization characterized by progressive subgrain rotation occurred in this alloy, but discontinuous dynamic recrystallization characterized by strain-induced grain boundary bulging and subsequent bridging sub-boundary rotation was the dominant nucleation mechanism. The nuclei will grow with ongoing deformation, which will contribute to the healing of the original bonding interface.

Xie B J, Sun M Y, Xu B, et al.

Dissolution and evolution of interfacial oxides improving the mechanical properties of solid state bonding joints

[J]. Mater. Des., 2018, 157: 437

[本文引用: 4]

Xie B J, Sun M Y, Xu B, et al.

Oxidation of stainless steel in vacuum and evolution of surface oxide scales during hot-compression bonding

[J]. Corros. Sci., 2019, 147: 41

[本文引用: 2]

Zhang J Y, Sun M Y, Xu B, et al.

Evolution of the interfacial microstructure during the plastic deformation bonding of copper

[J]. Mater. Sci. Eng., 2019, A746 : 1

[本文引用: 1]

Jiang H Y, Sun M Y, Wu M F, et al.

Microstructure and properties of 7075 aluminum alloy hot compress bonding joint

[J]. Heat Treat. Met., 2020, 45(2): 46

[本文引用: 1]

江海洋, 孙明月, 吴铭方 .

7075铝合金热变形连接接头的组织与性能

[J]. 金属热处理, 2020, 45(2): 46

DOI      [本文引用: 1]

应用Gleeble-3500热模拟机对7075铝合金进行了热变形连接试验,利用金相显微镜和扫描电镜对不同温度和保温时间的接头界面组织进行了观察和分析,并对接头进行了拉伸性能测试。结果表明:当连接温度为460℃,保温时间为24 h时,对界面进行EDS分析,界面处已经没有氧化物的偏聚,此时的力学性能最佳,抗拉强度达到444 MPa,屈服强度为265 MPa。

Ren S F, Zhang J Y, Zhang X F, et al.

Evolution of interfacial microstructure of Ni-Co base superalloy during plastic deformation bonding and its bonding mechanism

[J]. Acta Metall. Sin., 2022, 58: 129

DOI      [本文引用: 5]

Superalloys with excellent high-temperature resistance and oxidation resistance have been widely used in aviation and energy fields. The new Ni-Co base superalloy is considered a candidate for the next generation of turbine discs due to its higher performance of mechanical properties and microstructure stability at high temperatures. However, tungsten inert gas (TIG) welding, metal inert gas (MIG) welding, and other welding techniques are not suitable for welding the new Ni-Co base superalloy because the Al + Ti content of the alloy reaches 7.5%, while traditional welding techniques (electron beam welding, friction welding, and diffusion welding) also have some disadvantages. For example, friction welding has certain requirements on the shape of the sample, and it is not suitable for welding large-volume alloys. Diffusion welding requires a long heat retention period and a harmful precipitation phase exists at the interface. A new welding method is applied in this study to solve the problem of welding nickel-based superalloy, achieving a better bonding effect. The Gleeble 3500 thermal simulator was used to study the plastic deformation bonding of Ni-Co base superalloys in a temperature range of 1000-1200oC and a strain range of 5%-40% with a strain rate of 0.001 s-1. The recrystallization behavior of the interface was studied by OM, EBSD, and TEM, and the bonding mechanism of the interface was clarified. The results showed that the resistance to deformation of the alloy was low when the plastic deformation bonding was performed at 1150oC, and there was no risk of cracking of the alloy. Plastic deformation bonding experiments with different deformations had shown that the alloy can achieve complete bonding of the interface under the condition of 40% deformation, and its mechanical properties can reach the same level as the matrix. The tensile fracture analysis showed that the fracture profile of the 40% deformed joint was consistent with the base material, showing a ductile fracture pattern. The results of EBSD and TEM showed that the coarse grains near the interface were first refined during the plastic deformation. With the increase of deformation, the refined grain removed the original interface by the migration of the interfacial grain boundaries with the assistance of a continuous dynamics recrystallization process and ultimately led to the bonding of the interface.

任少飞, 张健杨, 张新房 .

新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制

[J]. 金属学报, 2022, 58: 129

DOI      [本文引用: 5]

为解决镍基高温合金的焊接难题,以新型Ni-Co基高温合金为实验材料,采用塑性变形连接的新方法,实现了新型Ni-Co基高温合金的连接。通过OM、EBSD、TEM等分析手段探究了界面的再结晶行为及界面的愈合机制。结果表明,1150℃进行塑性变形连接时,合金的变形抗力小,不易开裂。不同变形量的连接实验表明,在40%的变形量下,合金可以实现界面的完全愈合,其力学性能达到基体同等水平。在塑性变形过程中,界面附近的粗大晶粒首先发生细化,随着变形量的增加,细化的晶粒在连续动态再结晶的辅助作用下,通过界面晶界的迁移消除了原始连接界面,实现界面的愈合。

Miura H, Ozama M, Mogawa R, et al.

Strain-rate effect on dynamic recrystallization at grain boundary in Cu alloy bicrystal

[J]. Scr. Mater., 2003, 48: 1501

[本文引用: 1]

Wang Y, Shao W Z, Zhen L, et al.

Flow behavior and microstructures of superalloy 718 during high temperature deformation

[J]. Mater. Sci. Eng., 2008, A497: 479

[本文引用: 1]

Mandal S, Jayalakshmi M, Bhaduri A K, et al.

Effect of strain rate on the dynamic recrystallization behavior in a nitrogen-enhanced 316L(N)

[J]. Metall. Mater. Trans., 2014, 45A: 5645

[本文引用: 1]

Wang X Y, Wang D K, Jin J S, et al.

Effects of strain rates and twins evolution on dynamic recrystallization mechanisms of austenite stainless steel

[J]. Mater. Sci. Eng., 2019, A761: 138044

Humphrey F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. 2nd Ed., Amsterdam: Elsevier, 2004: 427

Sakai T, Belyakov A, Kaibyshev R, et al.

Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions

[J]. Prog. Mater. Sci., 2014, 60: 130

Sakai T, Jonas J J.

Overview no.35 Dynamic recrystallization: Mechanical and microstructural considerations

[J]. Acta Metall., 1984, 32: 189

[本文引用: 1]

Jonas J J, Sellars C M, Tegart W J M.

Strength and structure under hot-working conditions

[J]. Metall. Rev., 1969, 14: 1

[本文引用: 1]

Doherty R D, Hughes D A, Humphreys F J, et al.

Current issues in recrystallization: A review

[J]. Mater. Sci. Eng., 1997, A238: 219

Huang K, Logé R E.

A review of dynamic recrystallization phenomena in metallic materials

[J]. Mater. Des., 2016, 111: 548

[本文引用: 2]

Hu G D, Wang P, Li D Z, et al.

Effects of nitrogen on precipitation and tensile behaviors of 25Cr 20Ni austenitic stainless steels at elevated temperatures

[J]. Mater. Sci. Eng., 2019, A752: 93

[本文引用: 2]

Zhong X T, Wang L, Liu F.

Study on formation mechanism of necklace structure in discontinuous dynamic recrystallization of Incoloy 028

[J]. Acta Metall. Sin., 2018, 54: 969

DOI      [本文引用: 2]

During hot deformation, discontinuous dynamic recrystallization (DDRX) taking place by nucleation and growth in materials with low to medium stacking fault energies (SFEs), plays a crucial role in grain refinement, especially for the material with coarse grains. In order to study the formation mechanism of typical microstructure (necklace structure) during DDRX, the behavior of Incoloy 028 alloy at temperature range of 1000~1150 ℃ and the strain rates of 0.001~1 s-1 was investigated by means of thermodynamic simulation, EBSD and TEM. The results show that with the decrease of deformation temperature or the increase of strain rate, the mechanism of DDRX is transformed from the traditional type nucleating at triple junctions, into necklace structure which dominated by the multilayer nucleation mechanism. The first strand of recrystallized grain is nucleated through the bulging of serrated grain boundaries which is assisted by twinning at the back of the fluctuation. With the increase of the true strain, the large strain gradient in the deformation band develops rapidly resulting in the transformation of the subgrain boundary into a high angle grain boundary, and then the second/followed layer nucleation occurs by the rotation of subboundaries accompanied with nucleation at triple junction. Twin boundaries are formed by strain-induced grain boundaries migration and disappeared after nucleation to enhance the recrystallization grain boundary mobility, and then formed again during growth to lower the interfacial energy of the system.

钟茜婷, 王 磊, 刘 峰.

Incoloy 028合金不连续动态再结晶中链状组织形成机理研究

[J]. 金属学报, 2018, 54: 969

DOI      [本文引用: 2]

利用热力模拟、EBSD和TEM等方法,研究了Incoloy 028合金在1000~1150 ℃和0.001~1 s<sup>-1</sup>应变速率条件下的不连续动态再结晶(DDRX)行为,分析了DDRX过程中链状组织的形成机理。结果表明,随着变形温度降低或应变速率升高,体系发生传统型向链状型DDRX转变,其中传统型DDRX过程由晶粒长大主导,主要在三叉晶界处形核;链状型DDRX发生多层形核长大,其第一层形核机制为孪晶界辅助的原始晶界弓出形核,后续层为亚晶扭转与三叉晶界形核;孪晶界在辅助形核后消失以提高界面移动性,晶粒长大时再次形成以降低体系能量。

Souza R C, Silva E S, Jorge A M, et al.

Dynamic recovery and dynamic recrystallization competition on a Nb- and N-bearing austenitic stainless steel biomaterial: Influence of strain rate and temperature

[J]. Mater. Sci. Eng., 2013, A582: 96

[本文引用: 3]

Sakai T.

Dynamic recrystallization microstructures under hot working conditions

[J]. J. Mater. Process. Technol., 1995, 53: 349

[本文引用: 1]

Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. 3rd Ed., Shanghai: Shanghai Jiao Tong University Press, 2010: 5

[本文引用: 2]

胡赓祥, 蔡 珣, 戎咏华. 材料科学基础 [M]. 第 3版, 上海: 上海交通大学出版社, 2010: 5

[本文引用: 2]

Paggi A, Angella G, Donnini R.

Strain induced grain boundary migration effects on grain growth of an austenitic stainless steel during static and metadynamic recrystallization

[J]. Mater. Charact, 2015, 107: 174

Dudova N, Belyakov A, Sakai T, et al.

Dynamic recrystallization mechanisms operating in a Ni-20%Cr alloy under hot-to-warm working

[J]. Acta Mater., 2010, 58: 3624

[本文引用: 1]

Xie B C, Yu H, Sheng T, et al.

DDRX and CDRX of an as-cast nickel-based superalloy during hot compression at γ′ sub-/super-solvus temperatures

[J]. J. Alloys Compd., 2019, 803: 16

[本文引用: 2]

Kubota M, Ushioda K, Miyamoto G, et al.

Analysis of recrystallization behavior of hot-deformed austenite reconstructed from electron backscattering diffraction orientation maps of lath martensite

[J]. Scr. Mater., 2016, 112: 92

[本文引用: 1]

Kim J M, Kim S J, Kang J H.

Effects of short-range ordering and stacking fault energy on tensile behavior of nitrogen-containing austenitic stainless steels

[J]. Mater. Sci. Eng., 2022, A836: 142730

[本文引用: 1]

Kumar S, Samantaray D, Aashranth B, et al.

Dependency of rate sensitive DRX behaviour on interstitial content of a Fe-Cr-Ni-Mo alloy

[J]. Mater. Sci. Eng., 2019, A743: 148

[本文引用: 1]

/