Please wait a minute...
金属学报  2023, Vol. 59 Issue (4): 537-546    DOI: 10.11900/0412.1961.2022.00552
  综述 本期目录 | 过刊浏览 |
中国科学院金属研究所冷喷涂技术研究进展
熊天英, 王吉强()
中国科学院金属研究所 沈阳 110016
Research Progress of Cold Spray in Institute of Metal Research, Chinese Academy of Sciences
XIONG Tianying, WANG Jiqiang()
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

熊天英, 王吉强. 中国科学院金属研究所冷喷涂技术研究进展[J]. 金属学报, 2023, 59(4): 537-546.
Tianying XIONG, Jiqiang WANG. Research Progress of Cold Spray in Institute of Metal Research, Chinese Academy of Sciences[J]. Acta Metall Sin, 2023, 59(4): 537-546.

全文: PDF(2982 KB)   HTML
摘要: 

冷喷涂具有喷涂温度低和颗粒速度高的特点,是一种发展十分迅速的材料固态沉积技术,在金属涂层制备、增材制造和零部件修复方面具有广阔的应用前景。作为国内最早从事冷喷涂技术研究的单位之一,作者所在单位中国科学院金属研究所在冷喷涂沉积层的结合机制探索、组织性能调控及技术开发应用等方面开展了大量的研究工作。本文将围绕上述方面系统介绍中国科学院金属研究所冷喷涂技术的研究进展。

关键词 冷喷涂研究进展结合机制组织性能调控冷喷涂技术应用    
Abstract

Owing to low spraying temperature and high particle velocity, cold spray is a rapidly developing solid-material deposition technology that has broad application prospects in areas of metal coating preparation, additive manufacturing, and component repair. The Institute of Metal Research, Chinese Academy of Sciences, has conducted extensive research on cold spray, including the exploration of bonding mechanism, strategies and methods of tailoring microstructures and properties of deposits, and application of the cold spray technology. This paper systematically introduces the research progress of cold spray by the Institute of Metal Research, Chinese Academy of Sciences.

Key wordscold spray    research progress    bonding mechanism    tailoring the microstructure and property    application of cold spray
收稿日期: 2022-10-31     
ZTFLH:  TG174  
基金资助:国家自然科学基金项目(52271078);国家自然科学基金项目(51801217);国家自然科学基金项目(51671205)
通讯作者: 王吉强,jqwang11s@imr.ac.cn,主要从事冷喷涂技术研究
Corresponding author: WANG Jiqiang, professor, Tel: (024)23971743, E-mail: jqwang11s@imr.ac.cn
作者简介: 熊天英,女,1962年生,研究员,博士
图1  冷喷涂工作原理示意图
图2  316L不锈钢颗粒沉积在不同基体上的SEM像(喷涂参数:800℃,3.5 MPa)[6]
图3  Cu/Zn颗粒界面的元素分布和高分辨透射电镜像[8]
图4  冷喷涂Al涂层与聚醚醚酮(PEEK)界面的元素分布和微观结构[9]
图5  不同方向冷喷涂7075铝合金样品受力时裂纹扩展路径示意图[10]
图6  不同形貌Ta粉的SEM像[13]
图7  激光辅助冷喷涂原理示意图
图8  冷喷态和轧制态A380铝合金的微观组织及应力-应变曲线[21]
图9  冷喷涂-热轧制备Ti/钢层状复合材料流程示意图[38]
1 Assadi H, Gärtner F, Stoltenhoff T, et al. Bonding mechanism in cold gas spraying [J]. Acta Mater., 2003, 51: 4379
doi: 10.1016/S1359-6454(03)00274-X
2 Assadi H, Kreye H, Gärtner F, et al. Cold spraying—A materials perspective [J]. Acta Mater., 2016, 116: 382
doi: 10.1016/j.actamat.2016.06.034
3 Huang W, Xue Z L, Liu X, et al. Preparation and friction-wear property of plasma-sprayed CoCrAlTaY-Al2O3 coating [J]. Chin. J. Rare Met., 2021, 45: 836
3 黄 文, 薛召露, 刘 侠 等. 等离子喷涂CoCrAlTaY-Al2O3涂层的制备及高温摩擦磨损性能研究 [J]. 稀有金属, 2021, 45: 836
4 Fu W, Wu S G, Chen Q Y, et al. Microstructure and properties of high velocity oxygen fuel sprayed WC-Co-Ni coatings [J]. Chin. J. Rare Met., 2021, 45: 673
4 富 伟, 巫顺根, 陈清宇 等. 超音速火焰喷涂WC-Co-Ni涂层结构和性能研究 [J]. 稀有金属, 2021, 45: 673
5 Alkimov A P, Kosarev V F, Papyrin A N. A method of cold gas-dynamic spraying [J]. Doklady Akademii Nauk Sssr, 1990, 315: 1062
6 Ma G L, Cui X Y, Shen Y F, et al. Influence of substrate mechanical properties on deposition behaviour of 316L stainless steel powder [J]. Acta Metall. Sin., 2016, 52: 1610
6 马广璐, 崔新宇, 沈艳芳 等. 基体材料力学性能对316L不锈钢颗粒沉积行为的影响 [J]. 金属学报, 2016, 52: 1610
doi: 10.11900/0412.1961.2016.00154
7 Ma G L, Kong L Y, Li T F, et al. Microstructure of copper particle deposited on aluminum by cold spray [J]. Rare Met. Mater. Eng., 2018, 47: 1166
7 马广璐, 孔令艳, 李铁藩 等. 冷喷涂单颗粒铜在铝基体上的显微结构研究 [J]. 稀有金属材料与工程, 2018, 47: 1166
8 Zhao Z P, Tang J R, Du H, et al. In-situ chemical interaction in cold-sprayed Zn/Cu composite coating [J]. Mater. Lett., 2018, 228: 246
doi: 10.1016/j.matlet.2018.06.024
9 Liu H H, Tariq N U H, Ren Y P, et al. Beneficial role of the continuous powder oxide film in establishing chemical bonding at cold sprayed Al coating/PEEK substrate interface [J]. Appl. Surf. Sci., 2022, 601: 154234
doi: 10.1016/j.apsusc.2022.154234
10 Ren Y P, Tariq N U H, Liu H H, et al. Study of microstructural and mechanical anisotropy of 7075 Al deposits fabricated by cold spray additive manufacturing [J]. Mater. Des., 2021, 212: 110271
doi: 10.1016/j.matdes.2021.110271
11 Liu H H, Ren Y P, Li T F, et al. Pores in cold sprayed deposits and their control methods [J]. Mater. Prot., 2022, 55(1): 1
11 刘晗珲, 任宇鹏, 李铁藩 等. 冷喷涂沉积层中的孔隙及其控制措施 [J]. 材料保护, 2022, 55(1): 1
12 Ren Y P, Qiu X, Liu H H, et al. Application of heat treatment in cold spraying additive manufacturing [J]. Therm. Spray Technol., 2020, 12(3): 1
12 任宇鹏, 邱 翔, 刘晗珲 等. 热处理在冷喷涂增材制造中的应用 [J]. 热喷涂技术, 2020, 12(3): 1
13 Tang J R, Zhao Z P, Li N, et al. Influence of feedstock powder on microstructure and mechanical properties of Ta cold spray depositions [J]. Surf. Coat. Technol., 2019, 377: 124903
doi: 10.1016/j.surfcoat.2019.124903
14 Wang J Q, Cui X Y, Xiong T Y. Research progress of cold sprayed metal matrix composite coatings and materials [J]. China Surf. Eng., 2020, 33(4): 51
14 王吉强, 崔新宇, 熊天英. 冷喷涂金属基复合涂层及材料研究进展 [J]. 中国表面工程, 2020, 33(4): 51
15 Qiu X, Tariq N U H, Qi L, et al. Effects of dissimilar alumina particulates on microstructure and properties of cold-sprayed alumina/A380 composite coatings [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 1449
doi: 10.1007/s40195-019-00917-z
16 Qiu X, Tariq N U H, Wang J Q, et al. Microstructure, microhardness and tribological behavior of Al2O3 reinforced A380 aluminum alloy composite coatings prepared by cold spray technique [J]. Surf. Coat. Technol., 2018, 350: 391
doi: 10.1016/j.surfcoat.2018.07.039
17 Qiu X, Tariq N U H, Qi L, et al. A hybrid approach to improve microstructure and mechanical properties of cold spray additively manufactured A380 aluminum composites [J]. Mater. Sci. Eng., 2020, A772: 138828
18 Qiu X, Tariq NH, Qi L, et al. Influence of particulate morphology on microstructure and tribological properties of cold sprayed A380/Al2O3 composite coatings [J]. J. Mater. Sci. Technol., 2020, 44: 9
doi: 10.1016/j.jmst.2020.01.028
19 Bray M, Cockburn A, O'Neill W. The laser-assisted cold spray process and deposit characterisation [J]. Surf. Coat. Technol., 2009, 203: 2851
doi: 10.1016/j.surfcoat.2009.02.135
20 Qiu X, Wang J Q, Tariq N H, et al. Effect of heat treatment on microstructure and mechanical properties of A380 aluminum alloy deposited by cold spray [J]. J. Thermal Spray Technol., 2017, 26: 1898
doi: 10.1007/s11666-017-0640-8
21 Qiu X, Tariq N U H, Qi L, et al. In-situ Sip/A380 alloy Nano/Micro composite formation through cold spray additive manufacturing and subsequent hot rolling treatment: Microstructure and mechanical properties [J]. J. Alloys Compd., 2019, 780: 597
doi: 10.1016/j.jallcom.2018.11.399
22 Tariq N H, Gyansah L, Qiu X, et al. Thermo-mechanical post-treatment: A strategic approach to improve microstructure and mechanical properties of cold spray additively manufactured composites [J]. Mater. Des., 2018, 156: 287
doi: 10.1016/j.matdes.2018.06.062
23 Tariq N U H, Gyansah L, Qiu X, et al. Achieving strength-ductility synergy in cold spray additively manufactured Al/B4C composites through a hybrid post-deposition treatment [J]. J. Mater. Sci. Technol., 2019, 35: 1053
doi: 10.1016/j.jmst.2018.12.022
24 Tao Y S, Xiong T Y, Sun C, et al. Effect of α-Al2O3 on the properties of cold sprayed Al/α-Al2O3 composite coatings on AZ91D magnesium alloy [J]. Appl. Surf. Sci., 2009, 256: 261
doi: 10.1016/j.apsusc.2009.08.012
25 Tao Y S, Xiong T Y, Sun C, et al. Microstructure and corrosion performance of a cold sprayed aluminium coating on AZ91D magnesium alloy [J]. Corros. Sci., 2010, 52: 3191
doi: 10.1016/j.corsci.2010.05.023
26 Zhao Z P, Tang J R, Tariq N H, et al. Microstructure and corrosion behavior of cold-sprayed Zn-Al composite coating [J]. Coatings, 2020, 10: 931
doi: 10.3390/coatings10100931
27 Wang J Q, Kong L Y, Li T F, et al. Oxidation behavior of thermal barrier coatings with a TiAl3 bond coat on γ-TiAl Alloy [J]. J. Therm. Spray Technol., 2015, 24: 467
doi: 10.1007/s11666-014-0186-y
28 Wang J Q, Kong L Y, Li T F, et al. Microstructure evolution of cold-sprayed Al-Si alloy coatings on γ-TiAl during heat treatment [J]. J. Therm. Spray Technol., 2015, 24: 1071
doi: 10.1007/s11666-015-0273-8
29 Wang J Q, Kong L Y, Wu J, et al. Microstructure evolution and oxidation resistance of silicon-aluminizing coating on γ-TiAl alloy [J]. Appl. Surf. Sci., 2015, 356: 827
doi: 10.1016/j.apsusc.2015.08.204
30 Huang J, Zhao F, Cui X Y, et al. Long-term oxidation behavior of silicon-aluminizing coating with an in-situ formed Ti5Si3 diffusion barrier on γ-TiAl alloy [J]. Appl. Surf. Sci., 2022, 582: 152444
doi: 10.1016/j.apsusc.2022.152444
31 Liu H H, Tariq N U H, Ren Y P, et al. Effect of accelerating gas temperature on microstructure and properties of cold sprayed Al coating on polyether ether ketone (PEEK) [J]. Surf. Coat. Technol., 2022, 429: 127972
doi: 10.1016/j.surfcoat.2021.127972
32 Liu H H, Tariq N U H, Ren Y P, et al. Influence of Al2O3 content on microstructure, electrical conductivity and adhesion strength of cold sprayed Al-Al2O3 coatings on PEEK substrate [J]. Surf. Coat. Technol., 2022, 446: 128752
doi: 10.1016/j.surfcoat.2022.128752
33 Tariq N H, Gyansah L, Wang J Q, et al. Cold spray additive manufacturing: A viable strategy to fabricate thick B4C/Al composite coatings for neutron shielding applications [J]. Surf. Coat. Technol., 2018, 339: 224
doi: 10.1016/j.surfcoat.2018.02.007
34 Zhao L J, Tariq N U H, Ren Y P, et al. Effect of particle size on ceramic particle content in cold sprayed Al-based metal matrix composite coating [J]. J. Therm. Spray Technol., 2022, 31: 2505
doi: 10.1007/s11666-022-01457-2
35 Tang J R, Zhao Z P, Cui X Y, et al. Microstructure and bioactivity of a cold sprayed rough/porous Ta coating on Ti6Al4V substrate [J]. Sci. China Technol. Sci., 2020, 63: 731
doi: 10.1007/s11431-019-1446-0
36 Tang J R, Liu H Y, Guo M X, et al. Enhanced spreading, migration and osteodifferentiation of HBMSCs on macroporous CS-Ta—A biocompatible macroporous coating for hard tissue repair [J]. Mater. Sci. Eng., 2021, C129: 112411
37 Tang J R, Zhao Z P, Liu H S, et al. A novel bioactive Ta/hydroxyapatite composite coating fabricated by cold spraying [J]. Mater. Lett., 2019, 250: 197
doi: 10.1016/j.matlet.2019.04.123
38 Zhao Z P, Tariq N U H, Tang J R, et al. Microstructural evolutions and mechanical characteristics of Ti/steel clad plates fabricated through cold spray additive manufacturing followed by hot-rolling and annealing [J]. Mater. Des., 2020, 185: 108249
doi: 10.1016/j.matdes.2019.108249
39 Zhao Z P, Tang J R, Tariq N U H, et al. Effect of rolling temperature on microstructure and mechanical properties of Ti/steel clad plates fabricated by cold spraying and hot-rolling [J]. Mater. Sci. Eng., 2020, A795: 139982
40 Zhao Z P, Tariq N U H, Tang J R, et al. Influence of annealing on the microstructure and mechanical properties of Ti/steel clad plates fabricated via cold spray additive manufacturing and hot-rolling [J]. Mater. Sci. Eng., 2020, A775: 138968
41 Ren Y P, Tariq N U H, Liu H H, et al. An innovative and flexible approach to fabricate Mg/Al composite plates: Cold spraying and hot rolling post-treatment [J]. Mater. Sci. Eng., 2022, A849: 143515
42 Ren Y P, Tariq N H, Liu H H, et al. Unraveling the effects of hot rolling on microstructure and mechanical properties of cold sprayed Mg/Al clad plates [J]. Mater. Today Commun., 2022, 33: 104553
43 Tang J R, Tariq N U H, Zhao Z P, et al. Microstructure and mechanical properties of Ti-Ta composites prepared through cold spray additive manufacturing [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1465
doi: 10.1007/s40195-022-01387-6
[1] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[2] 李文亚, 张正茂, 徐雅欣, 宋志国, 殷硕. 冷喷涂Ni及镍基复合涂层研究进展[J]. 金属学报, 2022, 58(1): 1-16.
[3] 魏世忠, 徐流杰. 钢铁耐磨材料研究进展[J]. 金属学报, 2020, 56(4): 523-538.
[4] 白杨, 王振华, 李相波, 李焰. 低压冷喷涂制备Al(Y)-30%Al2O3涂层及其海水腐蚀行为[J]. 金属学报, 2019, 55(10): 1338-1348.
[5] 王锦程, 郭春文, 李俊杰, 王志军. 定向凝固晶粒竞争生长的研究进展[J]. 金属学报, 2018, 54(5): 657-668.
[6] 王锦程, 郭灿, 张琪, 唐赛, 李俊杰, 王志军. 原子尺度下凝固形核计算模拟研究的进展[J]. 金属学报, 2018, 54(2): 204-216.
[7] 朱传琳,张俊宝,程从前,赵杰. 变形温度对冷喷涂304不锈钢涂层材料高温变形行为的影响[J]. 金属学报, 2013, 49(10): 1275-1280.
[8] 巫湘坤 周香林 王建国 张济山. 冷喷涂过程中能量变化及沉积行为的模拟研究[J]. 金属学报, 2010, 46(4): 385-389.
[9] 宋玉泉 刘颖 徐进 管晓方. 结构陶瓷及其超塑性 II. 陶瓷材料的超塑性[J]. 金属学报, 2009, 45(1): 6-17.
[10] 周香林; 苏贤涌; 崔华; 郭辉华; 巫湘坤; 张济山 . 颗粒材料特性对冷喷涂撞击行为影响的模拟研究[J]. 金属学报, 2008, 44(11): 1286-1291 .
[11] 章华兵; 张俊宝; 单爱党; 吴建生; 宋洪伟 . 气体温度对冷喷涂Ni粒子结合与变形行为的影响[J]. 金属学报, 2007, 43(8): 823-828 .
[12] 李文亚; 李长久; 王豫跃; 杨冠军 . 冷喷涂Cu粒子参量对其碰撞变形行为的影响[J]. 金属学报, 2005, 41(3): 282-286 .