Please wait a minute...
金属学报  2020, Vol. 56 Issue (7): 997-1006    DOI: 10.11900/0412.1961.2019.00386
  本期目录 | 过刊浏览 |
时效路径对Al-0.7Mg-0.5Si-0.2Cu-0.5Zn合金沉淀析出行为的影响
朱亮1, 郭明星1,2(), 袁波1, 庄林忠1,2, 张济山1,2
1.北京科技大学新金属材料国家重点实验室 北京 100083
2.北京科技大学现代交通金属材料与加工技术北京实验室 北京 100083
Effect of Ageing Routes on Precipitation Behaviors of Al-0.7Mg-0.5Si-0.2Cu-0.5Zn Alloy
ZHU Liang1, GUO Mingxing1,2(), YUAN Bo1, ZHUANG Linzhong1,2, ZHANG Jishan1,2
1. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2. Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

朱亮, 郭明星, 袁波, 庄林忠, 张济山. 时效路径对Al-0.7Mg-0.5Si-0.2Cu-0.5Zn合金沉淀析出行为的影响[J]. 金属学报, 2020, 56(7): 997-1006.
Liang ZHU, Mingxing GUO, Bo YUAN, Linzhong ZHUANG, Jishan ZHANG. Effect of Ageing Routes on Precipitation Behaviors of Al-0.7Mg-0.5Si-0.2Cu-0.5Zn Alloy[J]. Acta Metall Sin, 2020, 56(7): 997-1006.

全文: PDF(4298 KB)   HTML
摘要: 

利用DSC、TEM、拉伸实验以及硬度测试等方法系统研究了时效路径对高Mg/Si比Al-Mg-Si-Cu-Zn合金沉淀析出行为的影响。结果表明,固溶淬火态和预时效态合金在非等温时效过程中β″相的析出激活能分别为80.1和64.5 kJ/mol;在等温时效过程中表现出不同的时效硬化和组织演化行为,其中固溶淬火态合金时效硬化速率较快,但最终2种路径处理的合金峰值硬度和强度基本相同;但经预时效处理的合金,峰时效态延伸率和应变硬化速率以及过时效阶段硬度降低速率均较高。与此同时,预时效态合金还可析出大量复合溶质原子团簇,虽然在高温等温时效时会进一步长大,但使得欠时效、峰时效和过时效态合金的沉淀相尺寸呈多尺度特征,而固溶淬火后直接等温时效的不同状态合金却无此特征。时效路径并未改变合金沉淀析出序列,但对沉淀相形核、长大速率影响显著,据此提出了时效路径对沉淀相形核和长大过程影响的模型示意图。

关键词 Al-Mg-Si-Cu-Zn合金时效路径预时效非等温时效等温时效    
Abstract

In order to reduce the weight of car body, Al-Mg-Si-Cu alloys have been widely studied and used to produce outer body panels of automobiles due to their favorable high-strength-to-weight ratio, recyclability and good formability. Moreover, the strength of Al-Mg-Si-Cu series alloys can be enhanced by bake hardening treatment. However, their formability and final strengths still need to be further improved compared to steels, which are the major obstacles to wide-scale application of Al alloys in the automotive fields. In this work, the effect of ageing routes on the precipitation behavior of Al-Mg-Si-Cu-Zn alloy with high Mg/Si ratio was systematically studied by DSC, TEM, tensile and hardness tests. The results show that the precipitation activation energies of the β″ phase formed in the non-isothermal ageing processes of the as-quenched and pre-aged alloys are 80.1 kJ/mol and 64.5 kJ/mol, respectively; both the different age hardening rates and microstructure evolution behaviors can be also observed during their isothermal ageing processes, such as, the age hardening rate of as-quenched alloy is much higher, but the peak hardness and strength values of the alloy treated by the two routes were basically the same. However, the elongation and strain hardening rate of the pre-aged alloy in the peak ageing state, and the hardness reduction rate in the over-ageing state are all much higher. In addition, a large number of complex solute clusters can be formed during pre-ageing, which will further grow in high temperature isothermal ageing process, but the sizes of precipitates formed in the under-ageing, peak-ageing and over-ageing states all show a multi-scale characteristics; in comparison, this feature cannot be found in the precipitates formed in the as-quenched alloy aged in the different conditions. The ageing routes cannot change the precipitation sequence of the alloy, but give a significant influence on the nucleation and growth rates of precipitates. As a consequence, a schematic diagram of nucleation and growth process of precipitates in the alloy with ageing routes is proposed.

Key wordsAl-Mg-Si-Cu-Zn alloy    ageing route    pre-ageing    non-isothermal ageing    isothermal ageing
收稿日期: 2019-11-11     
ZTFLH:  TG146.21  
基金资助:国家重点研发计划项目(2016YFB0300801);国家自然科学基金项目(51871029);国家自然科学基金项目(51571023);国家自然科学基金项目(51301016);政府引导类计划-政府间双边创新合作项目(BZ2019019)
作者简介: 朱 亮,男,1994年生,博士生
图1  Al-0.7Mg-0.5Si-0.2Cu-0.5Zn合金固溶淬火态和预时效态的DSC曲线
图2  Al-0.7Mg-0.5Si-0.2Cu-0.5Zn合金固溶淬火态及预时效态β″相的激活能计算过程图
图3  Al-0.7Mg-0.5Si-0.2Cu-0.5Zn合金的185 ℃等温时效硬化及峰时效态性能曲线

Alloy

Yield strength

MPa

Ultimate strength

MPa

Elongation %
AQ+T630233110.4
PA+T630033012.2
表1  不同时效路径处理后Al-0.7Mg-0.5Si-0.2Cu-0.5Zn合金峰时效态拉伸力学性能
图4  Al-0.7Mg-0.5Si-0.2Cu-0.5Zn合金185 ℃等温时效20 min的TEM像、HRTEM像及对应的Fourier变换(FFT)图
图5  Al-0.7Mg-0.5Si-0.2Cu-0.5Zn合金峰时效态的TEM像、HRTEM像和对应的FFT图,以及析出相尺寸分布图
图6  Al-0.7Mg-0.5Si-0.2Cu-0.5Zn合金过时效态的TEM像、HRTEM像及对应的FFT图
图7  时效路径对Al-0.7Mg-0.5Si-0.2Cu-0.5Zn合金沉淀相析出的影响模型图
[1] Hirsch J. Recent development in aluminium for automotive applications [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 1995
[2] Guo M X, Sha G, Cao L Y, et al. Enhanced bake-hardening response of an Al-Mg-Si-Cu alloy with Zn addition [J]. Mater. Chem. Phys., 2015, 162: 15
[3] Peng X Y, Guo M X, Wang X F, et al. Influence of particles with different sizes on microstructure, texture and mechanical properties of Al-Mg-Si-Cu series alloys [J]. Acta Metall. Sin., 2015, 51: 169
[3] (彭祥阳, 郭明星, 汪小锋等. 不同尺寸粒子对Al-Mg-Si-Cu系合金组织、织构和力学性能的影响 [J]. 金属学报, 2015, 51: 169)
[4] Li Y, Guo M X, Jiang N, et al. Precipitation behaviors and preparation of an advanced Al-0.93Mg-0.78Si-0.20Cu-3.00Zn alloy for automotive application [J]. Acta Metall. Sin., 2016, 52: 191
[4] (李 勇, 郭明星, 姜 宁等. 汽车用新型Al-0.93Mg-0.78Si-0.20Cu-3.00Zn合金的制备及其时效析出行为研究 [J]. 金属学报, 2016, 52: 191)
[5] Yuan B, Guo M X, Wu Y, et al. Influence of treatment pathways on the precipitation behaviors of Al-Mg-Si-Cu-(Zn)-Mn alloys [J]. J. Alloys Compd., 2019, 797: 26
[6] Guo M X, Zhang Y D, Yuan B, et al. Influence of aging pathways on the evolution of heterogeneous solute-rich features in peak-aged Al-Mg-Si-Cu alloy with a high Mg/Si ratio [J]. Philos. Mag. Lett., 2019, 99: 49
[7] Li G J, Guo M X, Du J Q, et al. Influence of precipitate-assisted nucleation on the microstructure and mechanical properties of Al-Mg-Si-Cu-Zn alloys [J]. Philos. Mag., 2019, 99: 1335
[8] Guo M X, Du J Q, Zheng C H, et al. Influence of Zn contents on precipitation and corrosion of Al-Mg-Si-Cu-Zn alloys for automotive applications [J]. J. Alloys Compd., 2019, 778: 256
[9] Jin S X, Ngai T, Zhang G W, et al. Precipitation strengthening mechanisms during natural ageing and subsequent artificial aging in an Al-Mg-Si-Cu alloy [J]. Mater. Sci. Eng., 2018, A724: 53
[10] Guo M X, Li G J, Zhang Y D, et al. Influence of Zn on the distribution and composition of heterogeneous solute-rich features in peak aged Al-Mg-Si-Cu alloys [J]. Scr. Mater., 2019, 159: 5
[11] Banhart J, Chang C S T, Liang Z Q, et al. Natural aging in Al-Mg-Si alloys—A process of unexpected complexity [J]. Adv. Eng. Mater., 2010, 12: 559
[12] Marioara C D, Andersen S J, Jansen J, et al. The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al-Mg-Si alloy [J]. Acta Mater., 2003, 51: 789
[13] Pogatscher S, Kozeschnik E, Antrekowitsch H, et al. Process-controlled suppression of natural aging in an Al-Mg-Si alloy [J]. Scr. Mater., 2014, 89: 53
[14] Tao G H, Liu C H, Chen J H, et al. The influence of Mg/Si ratio on the negative natural aging effect in Al-Mg-Si-Cu alloys [J]. Mater. Sci. Eng., 2015, A642: 241
[15] Chang C S T, Wieler I, Wanderka N, et al. Positive effect of natural pre-ageing on precipitation hardening in Al-0.44at%Mg-0.38at%Si alloy [J]. Ultramicroscopy, 2009, 109: 585
pmid: 19162402
[16] Pogatscher S, Antrekowitsch H, Werinos M, et al. Diffusion on demand to control precipitation aging: Application to Al-Mg-Si alloys [J]. Phys. Rev. Lett., 2014, 112: 225701
pmid: 24949778
[17] Zhen L, Kang S B, Kim H W. Effect of natural aging and preaging on subsequent precipitation process of an AI-Mg-Si alloy with high excess silicon [J]. Mater. Sci. Technol., 1997, 13: 905
[18] Zandbergen M W, Cerezo A, Smith G D W. Study of precipitation in Al-Mg-Si Alloys by atom probe tomography II. Influence of Cu additions [J]. Acta Mater., 2015, 101: 149
doi: 10.1016/j.actamat.2015.08.018
[19] Weng Y Y, Jia Z H, Ding L P, et al. Clustering behavior during natural aging and artificial aging in Al-Mg-Si alloys with different Ag and Cu addition [J]. Mater. Sci. Eng., 2018, A732: 273
[20] Guo M X, Zhang Y D, Li G J, et al. Solute clustering in Al-Mg-Si-Cu-(Zn) alloys during aging [J]. J. Alloys Compd., 2019, 774: 347
[21] Liu M, Zhang X P, Körner B, et al. Effect of Sn and In on the natural ageing kinetics of Al-Mg-Si alloys [J]. Materialia, 2019, 6: 100261
[22] Ding L P, He Y, Wen Z, et al. Optimization of the pre-aging treatment for an AA6022 alloy at various temperatures and holding times [J]. J. Alloys Compd., 2015, 647: 238
[23] Abid T, Boubertakh A, Hamamda S. Effect of pre-aging and maturing on the precipitation hardening of an Al-Mg-Si alloy [J]. J. Alloys Compd., 2010, 490: 166
[24] Murayama M, Hono K. Pre-precipitate clusters and precipitation processes in Al-Mg-Si Alloys [J]. Acta Mater., 1999, 47: 1537
[25] De Geuser F, Lefebvre W, Blavette D. 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy [J]. Philos. Mag. Lett., 2006, 86: 227
[26] Lumley R. Fundamentals of Aluminium Metallurgy [M]. Cambridge: Woodhead Publishing Press, 2011: 307
[27] Zhang Q L, Luan X, Dhawan S, et al. Development of the post-form strength prediction model for a high-strength 6xxx aluminium alloy with pre-existing precipitates and residual dislocations [J]. Int. J. Plast., 2019, 119: 230
[28] Poole W J, Wang X, Lloyd D J, et al. The shearable-non-shearable transition in Al-Mg-Si-Cu precipitation hardening alloys: Implications on the distribution of slip, work hardening and fracture [J]. Philos. Mag., 2005, 85: 3113
[29] Ø Ryen, Laukli H I, Holmedal B, et al. Large strain work hardening of aluminum alloys and the effect of mg in solid solution [J]. Metall. Mater. Trans., 2006, 37A: 2007
[30] Esteban-Manzanares G, Martínez E, Segurado J, et al. An atomistic investigation of the interaction of dislocations with Guinier-Preston zones in Al-Cu alloys [J]. Acta Mater., 2019, 162: 189
[1] 李吉臣, 冯迪, 夏卫生, 林高用, 张新明, 任敏文. 非等温时效对7B50铝合金组织及性能的影响[J]. 金属学报, 2020, 56(9): 1255-1264.
[2] 李吉臣, 冯迪, 夏卫生, 郭为民, 王国迎. 7055铝合金的非等温双级时效行为[J]. 金属学报, 2020, 56(11): 1495-1506.
[3] 陈懿, 郭明星, 易龙, 袁波, 李高洁, 庄林忠, 张济山. 新型Al-Mg-Si-Cu-Zn合金板材组织、织构和性能的优化调控[J]. 金属学报, 2017, 53(8): 907-917.
[4] 李勇,郭明星,姜宁,张许凯,张艳,庄林忠,张济山. 汽车用新型Al-0.93Mg-0.78Si-0.20Cu-3.00Zn合金的制备及其时效析出行为研究*[J]. 金属学报, 2016, 52(2): 191-201.
[5] 崔莉, 郭明星, 彭祥阳, 张艳, 张济山, 庄林忠. 预变形对汽车用Al-Mg-Si-Cu合金析出行为的影响[J]. 金属学报, 2015, 51(3): 289-297.
[6] 苏睿明, 曲迎东, 李荣德. 喷射态7075合金回归再时效中预时效的研究*[J]. 金属学报, 2014, 50(7): 863-870.
[7] 张巧霞,郭明星,胡晓倩,曹零勇,庄林忠,张济山. 汽车板用Al—0.6Mg—0.9Si—0.2Cu合金时效析出动力学研究[J]. 金属学报, 2013, 49(12): 1604-1610.
[8] 肖克来提; 盛玫 . 等温时效对SnAg/Cu表面贴装焊点微结构及剪切强度的影响[J]. 金属学报, 2000, 36(7): 697-702 .