Please wait a minute...
金属学报  2016, Vol. 52 Issue (5): 607-613    DOI: 10.11900/0412.1961.2015.00516
  论文 本期目录 | 过刊浏览 |
In3+掺杂CeO2的固溶度及其储氧能力*
张世政1,徐要辉1,汪庭语1,李锐星1(),才鸿年2
1 北京航空航天大学材料科学与工程学院空天材料与服役教育部重点实验室, 北京100191
2 中国兵器装备集团公司, 北京 100089
SOLID SOLUBILITY AND OXYGEN STORAGE CAPABILITY OF In3+-DOPED CeO2
Shizheng ZHANG1,Yaohui XU1,Tingyu WANG1,Ruixing LI1(),Hongnian CAI2
1 Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191, China
2 China South Industries Group Corporation, Beijing 100089, China;
引用本文:

张世政,徐要辉,汪庭语,李锐星,才鸿年. In3+掺杂CeO2的固溶度及其储氧能力*[J]. 金属学报, 2016, 52(5): 607-613.
Shizheng ZHANG, Yaohui XU, Tingyu WANG, Ruixing LI, Hongnian CAI. SOLID SOLUBILITY AND OXYGEN STORAGE CAPABILITY OF In3+-DOPED CeO2[J]. Acta Metall Sin, 2016, 52(5): 607-613.

全文: PDF(1043 KB)   HTML
  
摘要: 

以(CH2OH)2和H2O的混合溶液为溶剂, Ce(NO3)3?6H2O和In(NO3)3?4.5H2O分别为Ce和In源, 采用溶剂热法在200 ℃下合成了前驱体, 再经500 ℃焙烧2 h制备了In3+掺杂的CeO2粉末. 通过研究一系列In3+的添加浓度, 得出In3+掺杂CeO2中In3+的固溶度为1% (摩尔分数). In3+掺杂对CeO2形貌的影响不大, 固溶In3+前后的CeO2颗粒形貌均为层状结构, 但当In3+的添加量高于固溶度时, 出现了细碎的第二相颗粒. In3+饱和掺杂浓度时CeO2粉末的比表面积高于未掺杂的CeO2, 达到100 m2/g, 当In3+的添加量大于等于3%时比表面积有所下降. In3+添加量对储氧能力的影响为: 首先, In3+的引入能够明显降低CeO2的低温还原峰温度; 其次, 当In3+的添加量为饱和浓度1%时, CeO2的低温储氧能力由未掺杂的3.6×10-4 mol/g提高到4.4×10-4 mol/g; 当In3+的浓度大于等于3%时, 试样的低温储氧能力先有所下降, 随后趋于稳定. 不同In3+添加量CeO2粉末的晶格常数、氧空位浓度、比表面积和低温储氧能力都在1% In3+固溶度的位置出现了转折. 低温储氧能力与比表面积和氧空位浓度都有关联, 是二者综合作用的结果.

关键词 CeO2In3+掺杂储氧能力溶剂热    
Abstract

CeO2 is an important rare earth oxide and can be used in automotive exhaust three-way catalysts on the basis of its oxygen storage capability. Ion doping is an effective method to enhance the oxygen storage capability of CeO2. And when doping a cation whose size is smaller than Ce4+ and valence is lower than +4, it tends to evolve more defects. It is known that defects play important roles in enhancing the oxygen storage capability of CeO2. Therefore, In ion was selected as a dopant cation which matches above two factors of size and valence. In this work, a series of CeO2 with different content of In3+ were synthesized via a two-step process. The precursor was synthesized by a solvothermal method at 200 ℃ using a mixture solvent of (CH2OH)2 and H2O, as well as Ce(NO3)36H2O and In(NO3)3?4.5H2O as Ce and In sources, respectively. CeO2 was obtained after the precursor was calcined at 500 ℃ for 2 h in air. It was found that the solid solubility of In3+ in CeO2 was 1% (molar fraction). The doping of 1%In3+ in CeO2 almost had no impact on the morphology of multilayered structure. However, a second phase of small particles appeared and there were some changes of the morphology of multilayered structure when the concentration of In3+ increased further. The specific surface area of the 1%In3+ solid solution was 100 m2/g, which was th highest among all the samples, and undoped CeO2 (92 m2/g) ranked second. When the content of In3+ was above the solid solubility, i.e., 1%In3+, the specific surface area decreased. The low temperature oxygen storage capability could be improved from 3.6×10-4 mol/g for undoped CeO2 to 4.4×10-4 mol/g for 1%In3+-doped CeO2. When the In3+ content was greater than or equal to 3%, the low temperature oxygen storage capability decreased at the beginning, and then almost no change. Lattice parameter decreased and the concentration of Ce3+ and oxygen vacancy increased by the doping of In3+. Moreover, lattice parameter, the specific surface area, concentration of oxygen vacancy and low temperature oxygen storage capacity could mark a turning point for 1%In3+. It could be found that the low temperature oxygen storage capability was in relation to both the specific surface area and the concentration of oxygen vacancy of CeO2. In addition, the low temperature reduction peaks shifted towards lower temperatures with the addition of In3+.

Key wordsCeO2    In3+    doping    oxygen storage capability    solvothermal
收稿日期: 2015-10-08     
基金资助:*国家自然科学基金资助项目51372006
图1  溶剂热200 ℃反应24 h并经500 ℃焙烧2 h的不同In/(In+Ce)试样的XRD谱
图2  溶剂热200 ℃反应24 h并经500 ℃焙烧2 h的不同In/(In+Ce)试样的晶格常数
图3  溶剂热200 ℃反应24 h并经500 ℃焙烧2 h的In/(In+Ce)为0, 1%和10%试样的SEM像
图4  溶剂热200 ℃反应24 h并经500 ℃焙烧2 h的In/(In+Ce)为0和1%试样的HRTEM像
图5  溶剂热200 ℃反应24 h并经500 ℃焙烧2 h的In/(In+Ce)为0和1%试样的Ce3d XPS结果
图6  溶剂热200 ℃反应24 h并经500 ℃焙烧2 h的不同In/(In+Ce)试样的Raman谱
图7  通过Raman谱计算得出的溶剂热200 ℃反应24 h并经500 ℃焙烧2 h的不同In/(In+Ce)试样的氧空位浓度(A600/A460)
图8  溶剂热200 ℃反应24 h并经500 ℃焙烧2 h的不同In/(In+Ce)试样的H2程序升温还原(H2-TPR)曲线
图9  溶剂热200 ℃反应24 h并经500 ℃焙烧2 h的不同In/(In+Ce)试样的低温储氧能力曲线
[1] Mori T, Drennan J, Wang Y, Li J G, Lkegami T.J Therm Anal Calorim, 2002; 70: 309
[2] Steele B C H.Solid State Ionics, 2000; 129: 95
[3] Wang Z, Kale G M, Ghadiri M.J Am Ceram Soc, 2012; 95: 2863
[4] Chen Y, Long R W.Appl Surf Sci, 2011; 257: 8679
[5] Rajendran A, Takahashi Y, Koyama M, Kubo M, Miyamoto A.Appl Surf Sci, 2005; 244: 34
[6] Liu X, Shu Y, Sato T.Mater Chem Phys, 2009; 116: 421
[7] Lin K S, Chowdhury S.Int J Mol Sci, 2010; 11: 3226
[8] Imamura S, Yamada H, Utani K.Appl Catal, 2000; 192A: 221
[9] Christou S Y, Efstathiou A M.Top Catal, 2007; 42: 415
[10] Zhang D S, Du X J, Shi L Y, Gao R H.Dalton Trans, 2012; 41: 14455
[11] Prasad D H, Ji H I, Kim H R, Son J W, Kim B K, Lee H W, Lee J H.Appl Catal, 2011; 101B: 531
[12] Reina T R, Ivanova S, Delgado J J, Ivanov I, Idakiev V, Tabakova T, Centeno A M, Odriozola J A.Chemcatchem, 2014; 6: 1401
[13] Trovarelli A.Catal Rev, 1996; 38: 439
[14] Ka?par J, Fornasiero P, Graziani M.Catal Today, 1999; 50: 285
[15] Zhao B, Wang Q Y, Ge C H, Li Q F, Zhou R X.Chin J Catal, 2009; 30: 407
[15] (赵波, 王秋艳, 葛昌华, 李秋凤, 周仁贤. 催化学报, 2009; 30: 407)
[16] Fei D, Suda A, Tanabe T, Nagai Y, Sobukawa H, Shinjoh H, Sugiura M, Descorme C, Duprez D.Catal Today, 2004; 93: 827
[17] Ouyang J, Yang H M.J Phys, 2009; 113C: 6921
[18] Reddy B M, Thrimurthulu G, Katta L.Catal Lett, 2011; 141: 572
[19] Yuzhakova T, Raki? V, Guimon C, Auroux A.Chem Mater, 2007; 19: 2970
[20] Li R X, Sato T, Yabe S, Yamashita M, Momose S, Yoshida S, Yin S, Sato T.Solid State Ionics, 2002; 151: 235
[21] Li R X, Fu C, Li C Q, Yin S, Zhang Y, Sato T.J Ceram Soc Jpn, 2010; 118: 555
[22] Larachi F, Pierre J, Adnot A, Bernis A.Appl Surf Sci, 2002; 195: 236
[23] Guo M, Lu J Q, Wu Y N, Wang Y J, Luo M F.Langmuir, 2011; 27: 3872
[24] Tang X L, Zhang B C, Li Y, Xu Y D, Xin Q, Shen W J.Catal Today, 2004; 93: 191
[25] Ayastuy J L, Iglesias-Gonzalez A, Gutierrez-Ortiz M A.Chem Eng J, 2014; 244: 372
[26] Song Z X, Liu W, Nishiguchi H, Takami A, Nagaoka K, Takita Y.Appl Catal, 2007; 329A: 86
[1] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[2] 毛斐, 吕皓, 唐法威, 郭凯, 刘东, 宋晓艳. MnIn添加对SmCo7结构稳定性及磁矩影响的第一性原理计算[J]. 金属学报, 2021, 57(7): 948-958.
[3] 杨莎莎,杨峰,陈明辉,牛云松,朱圣龙,王福会. N掺杂对磁控溅射Ta涂层微观结构与耐磨损性能的影响[J]. 金属学报, 2019, 55(3): 308-316.
[4] 周小卫,欧阳春,乔岩欣,沈以赴. 活性Ti表面电沉积Ni-CeO2复合镀层及其强韧性机理分析[J]. 金属学报, 2017, 53(2): 140-152.
[5] 岑升波,陈辉,刘艳,马元明,吴影. CeO2对超音速火焰喷涂WC-12Co涂层腐蚀行为的影响*[J]. 金属学报, 2016, 52(11): 1441-1448.
[6] 单麟婷, 巴德纯, 曹青, 侯雪艳, 李建昌. Ce-Cu共掺杂对SnO2薄膜光电特性的影响*[J]. 金属学报, 2014, 50(1): 95-102.
[7] 李泓霖,张仲,吕英波,黄金昭,刘如喜. Eu掺杂ZnO结构光电性质的第一性原理及实验研究[J]. 金属学报, 2013, 29(4): 506-512.
[8] 周立颖,王福合. 点缺陷对γ-TiAl (100)表面O原子吸附和扩散影响的第一性原理研究[J]. 金属学报, 2013, 49(11): 1387-1391.
[9] 厉英,丁玉石,崔绍刚,王常珍. 掺杂Sc的CaZrO3的制备及电学性能[J]. 金属学报, 2012, 48(5): 575-578.
[10] 范永中 张淑娟 涂金伟 孙霞 刘芳 李明升. Si和Y掺杂对(Ti, Al)N涂层结构和性能的影响[J]. 金属学报, 2012, 48(1): 99-106.
[11] 厉英 马北越 王臻明 姜茂发. Na1.4Co2O4基热电材料的溶胶-凝胶法制备及表征[J]. 金属学报, 2011, 47(1): 109-114.
[12] 向鑫 陈长安 刘柯钊 罗丽珠 刘婷婷 王小英. C掺杂对Al中He行为的影响[J]. 金属学报, 2010, 46(3): 318-323.
[13] 杨义勇 彭志坚 付志强 邬苏东 陈新春 王成彪. 多组分缓冲层W梯度掺杂DLC复合薄膜研究[J]. 金属学报, 2010, 46(1): 34-40.
[14] 张静玉 刘庆峰 刘茜. Ti对Zn-Al合金薄膜耐腐蚀性能的影响[J]. 金属学报, 2009, 45(10): 1166-1170.
[15] 王东; 史苍际; 刘春明; 王常珍 . CaZr0.9In0.1O3高温质子导体管的制备及性质表征[J]. 金属学报, 2008, 44(2): 177-182 .