|
|
血管支架用可降解金属研究进展 |
郑玉峰( ), 杨宏韬 |
北京大学工学院材料科学与工程系 北京 100871 |
|
Research Progress in Biodegradable Metals forStent Application |
Yufeng ZHENG( ), Hongtao YANG |
Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China |
引用本文:
郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展[J]. 金属学报, 2017, 53(10): 1227-1237.
Yufeng ZHENG,
Hongtao YANG.
Research Progress in Biodegradable Metals forStent Application[J]. Acta Metall Sin, 2017, 53(10): 1227-1237.
[1] | Zheng Y F, Gu X N, Witte F.Biodegradable metals[J]. Mater. Sci. Eng., 2014, R77: 1 | [2] | Zheng Y F, Wu Y H.Revolutionizing metallic biomaterials[J]. Acta. Metall. Sin., 2017, 53: 257(郑玉峰,吴远浩. 处在变革中的医用金属材料[J]. 金属学报,2017, 53: 257) | [3] | Yu Y, Zhang W C, Duan X R.Study on microstructure and properties of thin tube of AZ31 magnesium alloy by extrusion technology[J]. Powder Metall. Technol., 2013, 31 : 201(于洋, 张文丛, 段祥瑞. AZ31镁合金细管静液挤压工艺及组织性能分析[J]. 粉末冶金技术, 2013, 31 : 201) | [4] | Liu F, Chen C X, Niu J L, et al.The processing of Mg alloy micro-tubes for biodegradable vascular stents[J]. Mater. Sci. Eng., 2015, C48: 400 | [5] | Liu X W, Sun J K, Yang Y H, et al.In vitro investigation of ultra-pure Zn and its mini-tube as potential bioabsorbable stent material[J]. Mater. Lett., 2015, 161: 53 | [6] | Grogan J A, Leen S B, Mchugh P E.Comparing coronary stent material performance on a common geometric platform through simulated bench testing[J]. J. Mech. Behav. Biomed. Mater., 2012, 12: 129 | [7] | Lin W J, Qin L, Qi H P, et al.Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold[J]. Acta Biomater., 2017, 54: 454 | [8] | Haude M, Ince H, Abizaid A, et al.Sustained safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de novo coronary lesions: 12-month clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial[J]. Eur. Heart J., 2016, 37: 2701 | [9] | Bowen P K, Shearier E R, Zhao S, et al.Biodegradable metals for cardiovascular stents: From clinical concerns to recent Zn-alloys[J]. Adv. Healthc. Mater., 2016, 5: 1121 | [10] | Zheng Y F, Liu B, Gu X N.Research progress in biodegradable metallic materials for medical application[J]. Mater. Rev., 2009, 23(1): 1(郑玉峰, 刘彬, 顾雪楠. 可生物降解性医用金属材料的研究进展[J]. 材料导报, 2009, 23(1): 1) | [11] | Sigel H.Metal Ions in Biological System[M]. New York: Marcel Dekker Inc, 1986: 1 | [12] | Bowman B A, Russell R M.Present Knowledge in Nutrition[M]. 8th Ed., Washington, DC: International Life Science Institute, 2001: 1 | [13] | Fawcett W, Haxby E, Male D A.Magnesium: Physiology and pharmacology[J]. Br. J. Anaesth., 1999, 83: 302 | [14] | Gu X N, Zheng Y F, Cheng Y, et al.In vitro corrosion and biocompatibility of binary magnesium alloys[J]. Biomaterials, 2009, 30: 484 | [15] | Ma J, Zhao N, Zhu D H.Biphasic responses of human vascular smooth muscle cells to magnesium ion[J]. J. Biomed. Mater. Res., 2016, 104A: 347 | [16] | Zhao N, Zhu D H.Endothelial responses of magnesium and other alloying elements in magnesium-based stent materials[J]. Metallomics, 2015, 7: 118 | [17] | Heublein B, Rohde R, Kaese V, et al.Biocorrosion of magnesium alloys: A new principle in cardiovascular implant technology?[J]. Heart, 2003, 89: 651 | [18] | Yue Y N, Wang L L, Yang N, et al.Effectiveness of biodegradable magnesium alloy stents in coronary artery and femoral artery[J]. J. Interv. Cardiol., 2015, 28: 358 | [19] | Li H W, Zhong H S, Xu K, et al.Enhanced efficacy of sirolimus-eluting bioabsorbable magnesium alloy stents in the prevention of restenosis[J]. J. Endovasc. Ther., 2011, 18: 407 | [20] | Mario C D, Griffiths H, Goktekin O, et al.Drug-eluting bioabsorb able magnesium stent[J]. J. Interv. Cardiol., 2004, 17: 391 | [21] | Maeng M, Jensen L O, Falk E, et al.Negative vascular remode-lling after implantation of bioabsorbable magnesium alloy stents in porcine coronary arteries: A randomised comparison with bare-metal and sirolimus-eluting stents[J]. Heart, 2009, 95: 241 | [22] | Waksman R, Pakala R, Kuchulakanti P K, et al.Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries[J]. Catheter. Cardiovasc. Interv., 2006, 68: 607 | [23] | Wittchow E, Adden N, Riedmueller J, et al.Bioresorbable drug-eluting magnesium-alloy scaffold: Design and feasibility in a porcine coronary model[J]. EuroIntervention, 2013, 8: 1441 | [24] | Zartner P, Buettner M, Singer H, et al.First biodegradable metal stent in a child with congenital heart disease: Evaluation of macro and histopathology[J]. Catheter. Cardiovasc. Interv., 2007, 69: 443 | [25] | Schranz D, Zartner P, Michel-Behnke I, et al.Bioabsorbable metal stents for percutaneous treatment of critical recoarctation of the aorta in a newborn[J]. Catheter. Cardiovasc. Interv., 2006, 67: 671 | [26] | Peeters P, Bosiers M, Verbist J, et al.Preliminary results after application of absorbable metal stents in patients with critical limb ischemia[J]. J. Endovasc. Ther., 2005, 12: 1 | [27] | Erbel R, Mario C D, Bartunek J, et al.Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: A prospective, non-randomised multicentre trial[J]. Lancet, 2007, 369: 1869 | [28] | Haude M, Erbel R, Erne P, et al.Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial[J]. Lancet, 2013, 381: 836 | [29] | Haude M, Ince H, Abizaid A, et al.Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial[J]. Lancet, 2016, 387: 31 | [30] | Andrews N C.Disorders of iron metabolism[J]. New Engl. J. Med., 1999, 341: 1986 | [31] | Hermawan H, Dubé D, Mantovani D.Developments in metallic biodegradable stents[J]. Acta Biomater., 2010, 6: 1693 | [32] | Mueller P P, May T, Perz A, et al.Control of smooth muscle cell proliferation by ferrous iron[J]. Biomaterials, 2006, 27: 2193 | [33] | Zhu S F, Huang N, Xu L, et al.Biocompatibility of pure iron: in vitro assessment of degradation kinetics and cytotoxicity on endothelial cells[J]. Mater. Sci. Eng., 2009, C29: 1589 | [34] | Lin W J, Zhang D Y, Zhang G, et al.Design and characterization of a novel biocorrodible iron-based drug-eluting coronary scaffold[J]. Mater. Des., 2016, 91: 72 | [35] | Peuster M, Wohlsein P, Brügmann M, et al.A novel approach to temporary stenting: Degradable cardiovascular stents produced from corrodible metal-results 6-18 months after implantation into New Zealand white rabbits[J]. Heart, 2001, 86: 563 | [36] | Peuster M, Hesse C, Schloo T, et al.Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta[J]. Biomaterials, 2006, 27: 4955 | [37] | Waksman R, Pakala R, Baffour R, et al.Short-term effects of biocorrodible iron stents in porcine coronary arteries[J]. J. Interv. Cardiol., 2008, 21: 15 | [38] | Pierson D, Edick J, Tauscher A, et al.A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials[J]. J. Biomed. Mater. Res., 2012, 100B: 58 | [39] | Peuster M, Hesse C, Schloo T, et al.Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta[J]. Biomaterials, 2006, 27: 4955 | [40] | Lin W J, Zhang D Y, Zhang G, et al.Design and characterization of a novel biocorrodible iron-based drug-eluting coronary scaffold[J]. Mater. Des., 2016, 91: 72 | [41] | Hermawan H, Purnama A, Dube D, et al.Fe-Mn alloys for metallic biodegradable stents: Degradation and cell viability studies[J]. Acta Biomater., 2010, 6: 1852 | [42] | Kaur K, Gupta R, Saraf S A, et al.Zinc: The metal of life[J]. Compr. Rev. Food. Sci. Food Saf., 2014, 13: 358 | [43] | Little P J, Bhattacharya R, Moreyra A E, et al.Zinc and cardiovascular disease[J]. Nutrition, 2010, 26: 1050 | [44] | Ma J, Zhao N, Zhu D H.Endothelial cellular responses to biodegradable metal zinc[J]. ACS Biomater. Sci. Eng., 2015, 1: 1174 | [45] | Ma J, Zhao N, Zhu D H.Bioabsorbable zinc ion induced biphasic cellular responses in vascular smooth muscle cells[J]. Sci. Rep., 2016, 6: 26661 | [46] | Bowen P K, Drelich J, Goldman J.Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents[J]. Adv. Mater., 2013, 25: 2577 | [47] | Bowen P K, Guillory II R J, Shearier E R, et al. Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents[J]. Mater. Sci. Eng., 2015, C56: 467 | [48] | Bowen P K, Seitz J M, Guillory II R J, et al. Evaluation of wrought Zn-Al alloys (1, 3, 5 wt % Al) through mechanical and in vivo testing for stent applications [J]. J. Biomed. Mater. Res., 2017, B, doi: 10.1002/jbm.b.33850 | [49] | Guillory II R J, Bowen P K, Hopkins S P, et al. Corrosion characteristics dictate the long-term inflammatory profile of degradable zinc arterial implants[J]. ACS Biomater. Sci. Eng., 2016, 2: 2355 | [50] | Zhao S, Seitz J M, Eifler R, et al.Zn-Li alloy after extrusion and drawing: Structural, mechanical characterization, and biodegradation in abdominal aorta of rat[J]. Mater. Sci. Eng., 2017, C76: 301 | [51] | Drelich A, Zhao S, Guillory II R J, et al. Long-term surveillance of zinc implant in murine artery: Surprisingly steady biocorrosion rate[J]. Acta Biomater., 2017, 58: 539 | [52] | Yang H T, Wang C, Liu C Q, et al.Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model, Biomaterials, 2017, doi: 10.1016/j.biomaterials.2017.08.022 | [53] | Nakazawa G, Granada J F, Alviar C L, et al.Anti-CD34 antibodies immobilized on the surface of sirolimus-eluting stents enhance stent endothelialization[J]. JACC Cardiovasc. Interv., 2010, 3: 68 | [54] | Swanson N, Hogrefe K, Javed Q, et al.Vascular endothelial growth factor (VEGF)-eluting stents: in vivo effects on thrombosis, endothelialization and intimal hyperplasia[J]. J. Invasive Cardiol., 2003, 15: 688 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|