Please wait a minute...
金属学报  2016, Vol. 52 Issue (12): 1545-1556    DOI: 10.11900/0412.1961.2016.00170
  本期目录 | 过刊浏览 |
基于微观组织演变的DZ125定向凝固高压涡轮叶片服役温度场的评估方法研究*
陈亚东1,郑运荣1,冯强1,2()
1 北京科技大学新金属材料国家重点实验室, 北京 100083
2 北京科技大学高端金属材料特种熔炼与制备北京市重点实验室, 北京 100083
EVALUATING SERVICE TEMPERATURE FIELD OF HIGH PRESSURE TURBINE BLADES MADE OF DIRECTIONALLY SOLIDIFIED DZ125 SUPERALLOY BASED ON MICRO-STRUCTURAL EVOLUTION
Yadong CHEN1,Yunrong ZHENG1,Qiang FENG1,2()
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Key Laboratory of Special Melting and Reparation of High-End Metal Materials, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

陈亚东, 郑运荣, 冯强. 基于微观组织演变的DZ125定向凝固高压涡轮叶片服役温度场的评估方法研究*[J]. 金属学报, 2016, 52(12): 1545-1556.
Yadong CHEN, Yunrong ZHENG, Qiang FENG. EVALUATING SERVICE TEMPERATURE FIELD OF HIGH PRESSURE TURBINE BLADES MADE OF DIRECTIONALLY SOLIDIFIED DZ125 SUPERALLOY BASED ON MICRO-STRUCTURAL EVOLUTION[J]. Acta Metall Sin, 2016, 52(12): 1545-1556.

全文: PDF(9498 KB)   HTML
摘要: 

以服役900 h的DZ125合金叶片为研究对象, 通过对叶片服役前后的枝晶干、枝晶间、晶界及碳化物各类组织退化行为的研究, 确定了枝晶干γ’相的体积分数作为反映服役温度的可量化表征参量. 结合叶片用DZ125合金在900~1100 ℃下显微组织的演变行为, 研究了热暴露温度与枝晶干γ’相体积分数之间的量化对应关系. 在此基础上, 提出了一种基于显微组织的涡轮叶片服役温度的实验评估方法. 同时, 分别假设叶片服役温度恒定以及考虑叶片实际服役温度变化2种情况, 实现了对等效平均服役温度(Tave)及等效最高服役温度(Tmax)的定量评估. 评估结果表明: 叶片叶身中部服役温度最高, 由叶身中部向叶尖和叶根服役温度逐渐降低; 同一截面服役温度由高到低依次为: 进气边>叶盆>排气边>叶背; 服役温度最高的区域为叶身中部截面的进气边, 服役时经历的等效最高服役温度为1050~1100 ℃. 叶片等效平均服役温度及等效最高服役温度的分布规律一致, 但部分部位的等效最高服役温度高于等效平均服役温度, 本研究认为叶片的等效最高服役温度的评估结果更为合理.

关键词 高温合金,涡轮叶片,服役,定量表征,温度场    
Abstract

To get the actual service temperature distribution of turbine blades in aeroengines is very important for the design and maintenance. However, the acquisition of service temperature distribution has always been a challenge due to the complex and severe working condition of turbine blades. In this work, one turbine blade made of directionally solidified DZ125 superalloy was investigated after the service in air for 900 h. The microstructural evolution of DZ125 superalloy after thermal exposure at 900~1100 ℃ without the stress in different time period was also investigated, for comparison. According to microstructural degradation behaviors in the dendritic region, interdendritic region, carbides and grain boundary of DZ125 superalloy before and after service, the volume fraction of γ’ precipitates in the dendritic region was determined as the quantitative characterization parameter. A method to evaluate the service temperature of turbine blades was developed, based on the quantitative characterization of microstructural evolution, such as the relationship between the thermally exposured temperature and volume fraction of γ’ precipitates. The equivalent average service temperature (Tave) and the equivalent maximum service temperature (Tmax) were proposed based on the assumption of the constant temperature during service and the nearly service condition with variable temperature of blades, respectively. The results indicate that the service temperature was higher in the middle of the blade, and became lower at the locations closer to the tip or the root. For each cross-section, the service temperatures of the serviced blade in the descending order were leading edge, pressure side, trailing edge and suction side. The highest service temperature of 1050~1100 ℃ appeared at the leading edge in the middle of the blade. The distribution trend of Tave agreed well with that of Tmax, but Tmax was higher than Tave in some locations of the blade. This work suggests that the evaluation results of Tmax were more reasonable than those of Tave. This method would be helpful to establish the assessment method of the service-induced microstructural damage in turbine blades made of directionally solidified superalloys.

Key wordssuperalloy,    turbine blade,    service,    quantitative characterization,    temperature field
收稿日期: 2016-05-03     
基金资助:* 国家高技术研究发展计划项目2012AA03A513和教育部技术支撑重点项目625010337资助
图1  服役900 h的DZ125合金一级涡轮叶片示意图
图2  服役900 h的DZ125合金叶片榫头部位不同区域的典型显微组织
图3  服役900 h的DZ125合金叶片A-3截面叶盆部位不同区域的典型显微组织
图4  服役900 h的DZ125合金叶片5个截面的进气边枝晶干处的典型显微组织
图5  服役900 h的DZ125合金叶片A-3截面不同部位枝晶干处的典型显微组织
图6  服役900 h的DZ125合金叶片不同截面不同部位枝晶干处的γ’相体积分数
图7  DZ125合金叶片经不同温度不同时间热暴露后(空冷)枝晶干处的典型显微组织
图8  叶片材料DZ125合金在900~1100 ℃不同时间热暴露后枝晶干处的γ’相体积分数
图9  DZ125合金在400~1400 ℃范围内的相组成-温度平衡相图
图10  服役900 h的DZ125合金叶片Tave的分布
Location Leading edge Pressure side Suction side Trailing edge
Section A-1 950~1000 950~1000 ≤900 ≤900
Section A-2 1050~1100 950~1000 ≤900 900~950
Section A-3 1050~1100 1000~1050 ≤900 950~1000
Section A-4 1050~1100 950~1000 ≤900 ≤900
Section A-5 ≤900 ≤900 ≤900 ≤900
表1  服役900 h的DZ125合金叶片等效平均服役温度(Tave)的评估结果
Location Leading edge Pressure side Suction side Trailing edge
Section A-1 1000~1050 1000~1050 ≤900 ≤900
Section A-2 1050~1100 1000~1050 ≤900 950~1000
Section A-3 1050~1100 1000~1050 ≤900 1000~1050
Section A-4 1050~1100 950~1000 ≤900 ≤900
Section A-5 ≤900 ≤900 ≤900 ≤900
表2  服役900 h的DZ125合金叶片等效最高服役温度(Tmax)的评估结果
[1] Dong Z G, Wang M, Li X X, Teng B Q. J Steel Res, 2011; 23: 455
[1] (董志国, 王鸣, 李晓欣, 滕佰秋. 钢铁研究学报, 2011; 23: 455)
[2] Ali A R A, Janajreh I.Energy Procedia, 2015; 75: 3220
[3] Dye D, Anxin M, Reed R C.In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Warrendale: Minerals, Metals & Materials Soc, 2008: 911
[4] Cheng W F, Wen Z T, Guang C B.Aerosp Sci Technol, 2014; 39: 588
[5] Wen Z X, Hou N, Wang B.Multi Model Mater Str, 2010; 6: 508
[6] Carter T J.Eng Fail Anal, 2005; 12: 237
[7] Kim S G, Hwang Y H, Kim T G, Shu C M.Eng Fail Anal, 2008; 15: 394
[8] Tong J Y, Ding X F, Wang M L, Zheng Y R, Yagi K, Feng Q.Mater Sci Eng, 2014; A618: 605
[9] Yang J X, Zheng Q, Sun X F, Guan H R, Hu Z Q.Mater Sci Eng, 2007; A457: 148
[10] Miura N, Nakata K, Miyazaki M, Hayashi Y, Kondo Y.In: Chandra T, Reimers W, Wanderka N, Ionescu M eds., 6th Int Conf on Processing and Manufacturing of Advanced Materials, Berlin: Materials Science Forum, 2010: 2291
[11] Wu X, Beres W, Zhang Z, Reed P.In: Badyda K, Bujalski W, Milewski J, Warchol M, Nowowiejska U eds., ASME Turbo Expo 2010 Power for Land, Sea and Air, Glasgow: ASME Press, 2010: 499
[12] Xu X, Yu Z.Eng Fail Anal, 2007; 14: 1322
[13] Feng Q, Tong J Y, Zheng Y R, Wang M L, Wei W J, Zhao H L, Yuan X F, Ding X F.Mater China, 2012; 31(12): 21
[13] (冯强, 童锦艳, 郑运荣, 王美玲, 魏文娟, 赵海龙, 袁晓飞, 丁贤飞. 中国材料进展, 2012; 31(12): 21)
[14] Cai Y L, Zheng Y R.Metallographic Research of Superalloys. Beijing: National Defense Industry Press, 1986: 228
[14] (蔡玉林, 郑运荣. 高温合金的金相研究. 北京: 国防工业出版社, 1986: 228)
[15] Yuan X F, Song J X, Zheng Y R, Huang Q, Yagi K, Xiao C B, Feng Q.J Alloys Compd, 2016; 662: 583
[16] Yuan X F, Song J X, Zheng Y R, Huang Q, Yagi K, Xiao C B, Feng Q.Mater Sci Eng, 2016; A651: 734
[17] Wang C S, Zhang J, Liu L, Fu H Z.J Alloys Compd, 2010; 508: 440
[18] Miura N, Kondo Y.J ASTM Int, 2011; 9: 1
[19] Murakumo T, Kobayashi T, Koizumi Y, Harada H.Acta Mater, 2004; 52: 3737
[20] Yu Y N, Yang P, Qiang W J, Chen L.Foundations of Materials Science. Beijing: High Education Press, 2006: 26
[20] (余永宁, 杨平, 强文江, 陈冷. 材料科学基础. 北京: 高等教育出版社, 2006: 266)
[21] Giraud R, Hervier Z, Cormier J, Staint-Martin G, Hamon F, Mihet X, Mendez J.Metall Mater Trans, 2012; 44: 131
[22] Roebuck B, Cox D, Reed R.Scr Mater, 2001; 44: 917
[23] Liu P C, Zhang X N, Ge L, Li X.J Chin Electron Microsc Soc, 2015; 34: 298
[23] (刘程鹏, 张晓娜, 葛麟, 李宪. 电子显微学报, 2015; 34: 298)
[24] Pierret S, Etter T, Evans A, Swygenhoven H V.Acta Mater, 2013; 61: 1478
[25] Reyhani M R, Alizadeh M, Fathi A, Khaledi H.Propul Power Res, 2013; 2: 148
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[4] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[5] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[6] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[8] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[9] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[10] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[11] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[12] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[13] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[14] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[15] 刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.