Please wait a minute...
金属学报  2014, Vol. 50 Issue (10): 1253-1259    DOI: 10.11900/0412.1961.2014.00346
  本期目录 | 过刊浏览 |
高铌TiAl合金在疲劳蠕变作用下的裂纹萌生及扩展
余龙1, 宋西平1(), 张敏1, 李宏良1, 焦泽辉2, 于慧臣2
1 北京科技大学新金属材料国家重点实验室, 北京100083
2 中航工业北京航空材料研究院先进高温结构材料重点实验室, 北京100095
CRACK INITIATION AND PROPAGATION OF HIGH Nb-CONTAINING TiAl ALLOY IN FATIGUE-CREEP INTERACTION
YU Long1, SONG Xiping1(), ZHANG Min1, LI Hongliang1, JIAO Zehui2, YU Huichen2
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
2 Science and Technology on Advanced High Temperature Structural Materials Laboratory, AVIC Beijing Institute of Aeronautical Materials, Beijing 100095
引用本文:

余龙, 宋西平, 张敏, 李宏良, 焦泽辉, 于慧臣. 高铌TiAl合金在疲劳蠕变作用下的裂纹萌生及扩展[J]. 金属学报, 2014, 50(10): 1253-1259.
Long YU, Xiping SONG, Min ZHANG, Hongliang LI, Zehui JIAO, Huichen YU. CRACK INITIATION AND PROPAGATION OF HIGH Nb-CONTAINING TiAl ALLOY IN FATIGUE-CREEP INTERACTION[J]. Acta Metall Sin, 2014, 50(10): 1253-1259.

全文: PDF(6149 KB)   HTML
摘要: 

利用SEM原位观察技术研究了近片层Ti-45Al-8Nb-0.2W-0.2B-0.1Y合金在750 ℃疲劳蠕变交互作用下的裂纹萌生及扩展行为, 循环实验采用在最大拉应力保载的梯形波. 结果表明, 裂纹主要在片层团界面萌生, 裂纹萌生方式包括蠕变空洞和疲劳微裂纹. 片层团界面处的微裂纹先通过吞并蠕变空洞或在裂纹尖端应力集中作用下沿片层团界面进行扩展, 然后相互连接长大; 当裂纹扩展受到不同取向的片层团界面阻碍时, 受阻的裂纹开始沿试样厚度方向扩展, 且附近伴随出现垂直于载荷方向的微裂纹; 最终受阻的裂纹相互连接直至合金断裂. 将实验结果与该合金在相同条件下疲劳变形和蠕变变形的原位观察结果进行了比较. 结合实验结果建立了高铌TiAl合金在疲劳蠕变交互作用下裂纹萌生及扩展示意模型.

关键词 TiAl合金疲劳蠕变交互作用原位观察裂纹萌生裂纹扩展    
Abstract

TiAl-based alloys appear as potential competitors to steels and superalloys applied in aerospace and automotive industries due to their low density, high specific strength and stiffness and good oxidation resistance at elevated temperatures. As a new generation of TiAl-based alloys, high Nb-containing TiAl alloys have become a promising high temperature structural material due to their better high temperature strength and oxidation resistance than ordinary TiAl alloys. TiAl-based alloy components such as low pressure turbine blade and compressor impeller often serve in near steady conditions for a duration of time once peak operating conditions are achieved at high temperature. The components suffer not only from rapidly induced damage from start-up and shutdown cycles, but also from creep damage under sustained loading periods. Moreover, the possible interaction damage between fatigue and creep must be considered. Thus, the study of fatigue-creep interaction for TiAl-based alloys is of great practical importance. Large numbers of researches were focused on the fatigue or creep properties of TiAl-based alloys, however, the fatigue-creep interaction behavior was rarely reported. Therefore, the crack initiation and propagation behavior of a nearly lamellar Ti-45Al-8Nb-0.2W-0.2B-0.1Y alloy in fatigue-creep interaction was observed at 750 ℃. The cyclic loading tests were carried out using a mini servo-hydraulic fatigue machine in a SEM chamber. The entire process of crack initiation and propagation was observed. The load cycling was trapezoidal by applying a dwell time at the maximum tension stress. The results indicated that micro-cracks mainly occurred at internal grain boundaries in the form of creep void or fatigue micro-crack. The micro-cracks firstly extended along the grain boundary by absorbing the creep voids or the stress concentration around crack tips, then connected with each other forming a longer crack. As the crack was frustrated by grain boundaries of other orientations, the crack began to grow in the thickness direction. Meanwhile, the micro-cracks perpendicular to loading direction emerged. Eventually, the frustrated cracks interconnected resulting in fracture. Compared to the in situ SEM observations in fatigue deformation, the dwell time resulted in the increase of probability of grain boundary crack initiation and the changes of crack propagation path. Thus, the fracture mode transform from transcrystalline to intercrystalline and the fatigue lifetime significantly decreased. The model of the crack initiation and propagation behaviors of high Nb-containing TiAl alloys in fatigue-creep interaction was presented in this work.

Key wordsTiAl alloy    fatigue-creep interaction    in situ observation    crack initiation    crack propagation
收稿日期: 2014-06-27     
ZTFLH:  TG146.2  
基金资助:* 国家重点基础研究发展计划资助项目2011CB605506
作者简介: null

余 龙, 男, 1988年生, 博士生

图1  试样形状尺寸
图2  疲劳蠕变交互作用加载波形图
图3  Ti-45Al-8Nb-0.2W-0.2B-0.1Y铸态合金的SEM像
图4  Ti-45Al-8Nb-0.2W-0.2B-0.1Y铸态合金在循环变形时平均应变随周次的变化曲线
图5  Ti-45Al-8Nb-0.2W-0.2B-0.1Y铸态合金在循环变形时平均应变速率随时间的变化曲线
图6  Ti-45Al-8Nb-0.2W-0.2B-0.1Y铸态合金在循环变形时的原位观察SEM像
图7  保载时间Δt=60 s时Ti-45Al-8Nb-0.2W-0.2B-0.1Y铸态合金在循环变形断裂前的原位观察SEM像
图8  Δt=0 s时Ti-45Al-8Nb-0.2W-0.2B-0.1Y铸态合金断裂前后的表面形貌
图9  高铌TiAl合金在750 ℃疲劳蠕变交互作用下的裂纹萌生及扩展模型
[1] Kim Y W. JOM, 1989; 41(7): 24
[2] Kim Y W. Acta Metall Mater, 1992; 40: 1121
[3] Zhang Y G,Han Y F,Chen G L,Guo J T,Wan X J,Feng D. Structural Intermetallics. Beijing: National Defense Industry Press, 2001: 705
[3] (张永刚,韩雅芳,陈国良,郭建亭,万晓景,冯 涤. 金属间化合物结构材料. 北京: 国防工业出版社, 2001: 705)
[4] Chen G L,Lin J P.Physical Metallurgy for the structural Ordered Intermetallics. Beijing: Metallurgical Industry Press, 1999: 285
[4] (陈国良,林均品. 有序金属间化合物结构材料物理金属学基础. 北京: 冶金工业出版社, 1999: 285)
[5] Chen G L, Wang X T, Ni K Q, Hao S M, Cao J X, Ding J J, Zhang X. Intermetallics, 1996; 4: 13
[6] Zhang W J, Deevi S C, Chen G L. Intermetallics, 2002; 10: 403
[7] Tetsui T. Intermetallics, 2002; 10: 239
[8] Chen G L, Sun Z Q, Zhou X. Mater Sci Eng, 1992; A153: 597
[9] Chen G L, Sun Z Q, Zhou X. Corrosion, 1992; 48: 939
[10] Li S J, Liu Z C, Lin J P, Chen G L, Zhang W J. Rare Met Mater Eng, 2002; 31: 31
[10] (李书江, 刘自成, 林均品, 陈国良, 张卫军. 稀有金属材料与工程, 2002; 31: 31)
[11] He S F, Lin J P, Xu X J, Gao J F, Wang Y L, Song X P, Chen G L. Rare Met Mater Eng, 2006; 35: 257
[11] (何素芳, 林均品, 徐向俊, 高建峰, 王艳丽, 宋西平, 陈国良. 稀有金属材料与工程, 2006; 35: 257)
[12] Chen W R, Triantafillou J, Beddoes J, Zhao L. Acta Metall Sin (Engl Lett), 1996; 9: 565
[13] Nagai H, Takahashi T, Oikawa H. J Mater Sci, 1990; 25: 629
[14] Kimm D I, Wolfenstine J. Scr Metall Mater, 1994; 30: 615
[15] Wang J N, Zhu J, Wu J S, Du X W. Acta Meter, 2002; 50: 1307
[16] Zhang W J, Chen G L, Appel F, Nieh T G, Deevi S C. Mater Sci Eng, 2001; A315: 250
[17] Sastry S M L, Lipsitt H A. Metall Trans, 1977; 8A: 299
[18] Malakondaiah G, Nicholas T. Metall Mater Trans, 1996; 27A: 2239
[19] Gloanec A L, Jouiad M, Bertheau D, Grange M, Henaff G. Intermetallics, 2007; 15: 520
[20] Gloanec A L, Milani T, Henaff G. Int J Fatigue, 2010; 32: 1015
[21] Cao R, Lin Y Z, Hu D, Chen J H. Eng Fract Mech, 2008; 75: 4343
[22] Kim S W, Kumar K S, Oh M H, Wee D M. Intermetallics, 2007; 15: 976
[23] Mine Y J, Fujisaki H, Matsuda M, Takeyama M, Takashima K. Scr Mater, 2011; 65: 707
[24] Li X D, Wang X S, Ren H H, Chen Y L, Mu Z T. Corros Sci, 2012; 55: 26
[25] Wang X S, Yan C K, Li Y, Xue Y B, Meng X K, Wu B S. Int J Fract, 2008; 151: 269
[26] Wang X S, Fan J H. Int J Fatigue, 2006; 28: 79
[27] Polak J, Man J, Petrenec M, Tobias J. Int J Fatigue, 2012; 39: 103
[28] Christ H J, Wamukwamba C K, Mughrabi H. Mater Sci Eng, 1997; A234-246: 382
[29] Zhang J S. Deformation and Fracture of Materials at High Temperature. Beijing: Science Press, 2007: 426
[29] (张俊善. 材料的高温变形与断裂. 北京: 科学出版社, 2007: 426)
[30] Yu L, Song X P, Zhang M, Lin J P, Jiao Z H, Yu H C. Rare Met Mater Eng, 2014; 43: 881
[30] (余 龙, 宋西平, 张 敏, 林均品, 焦泽辉, 于慧臣. 稀有金属材料工程, 2014; 43: 881)
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[3] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[4] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[5] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[6] 陈玉勇, 叶园, 孙剑飞. TiAl合金板材轧制研究现状[J]. 金属学报, 2022, 58(8): 965-978.
[7] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[8] 李天瑞, 刘国怀, 于少霞, 王文娟, 张风奕, 彭全义, 王昭东. 直接包套轧制铸态Ti-46Al-8Nb合金的组织特征及热变形机制[J]. 金属学报, 2020, 56(8): 1091-1102.
[9] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[10] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[11] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[12] 陈占兴,丁宏升,陈瑞润,郭景杰,傅恒志. 脉冲电流作用下TiAl合金凝固组织演变及形成机理[J]. 金属学报, 2019, 55(5): 611-618.
[13] 廖依敏, 丰敏, 陈明辉, 耿哲, 刘阳, 王福会, 朱圣龙. TiAl合金表面搪瓷基复合涂层与多弧离子镀NiCrAlY涂层的抗热腐蚀行为对比研究[J]. 金属学报, 2019, 55(2): 229-237.
[14] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.
[15] 张啸尘, 孟维迎, 邹德芳, 周鹏, 石怀涛. 预循环应力对高速列车关键结构用铝合金材料疲劳裂纹扩展行为的影响[J]. 金属学报, 2019, 55(10): 1243-1250.