Please wait a minute...
金属学报  2013, Vol. 49 Issue (11): 1428-1432    DOI: 10.3724/SP.J.1037.2013.00507
  论文 本期目录 | 过刊浏览 |
0.037%H对铸态Ti-45Al-5Nb-0.8Mo-0.3Y合金高温变形行为的影响
温道胜,宗影影,徐文臣,杨单媚,单德彬
哈尔滨工业大学材料科学与工程学院, 哈尔滨 150001
EFFECT OF 0.037%H ON HIGH TEMPERATURE DEFORMATION BEHAVIOR OF A CAST Ti-45Al-5Nb-0.8Mo-0.3Y ALLOY
WEN Daosheng, ZONG Yingying, XU Wenchen, YANG Danmei, SHAN Debin
Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
引用本文:

温道胜,宗影影,徐文臣,杨单媚,单德彬. 0.037%H对铸态Ti-45Al-5Nb-0.8Mo-0.3Y合金高温变形行为的影响[J]. 金属学报, 2013, 49(11): 1428-1432.
WEN Daosheng, ZONG Yingying, XU Wenchen, YANG Danmei, SHAN Debin. EFFECT OF 0.037%H ON HIGH TEMPERATURE DEFORMATION BEHAVIOR OF A CAST Ti-45Al-5Nb-0.8Mo-0.3Y ALLOY[J]. Acta Metall Sin, 2013, 49(11): 1428-1432.

全文: PDF(1641 KB)  
摘要: 

为了研究热氢处理技术对TiAl基金属间化合物Ti-45Al-5Nb-0.8Mo-0.3Y合金高温变形行为的影响规律,对未置氢和H含量为0.037% (质量分数)的铸态合金进行了等温热压缩实验,并利用SEM和TEM观察了合金压缩后的微观组织.结果表明,H可以降低合金的高温变形流动应力, 细化微观组织,提高合金的热加工性能.与未置氢合金相比, 在1200℃, 应变速率0.01 s-1变形条件下,H可使合金的峰值流动应力下降25%左右.置氢处理促进了位错运动、动态再结晶和孪生变形, 并提高了β相的含量,这是置氢合金高温变形流动应力下降的主要原因.

关键词 TiAl基金属间化合物置氢流动应力位错运动动态再结晶    
Abstract

TiAl-based alloys have been regarded as potential structural materials for the aerospace industry because of their high specific strength at elevated temperature, good creep properties and excellent resistance to oxidation. However, their low room temperature ductility and bad high temperature deformability are the considerable barriers to wide application of such alloys. It has been reported that thermo hydrogen treatment (THT) was an effective way to improve the formability of Ti-Al binary alloys. However, up to now few works have been done about the effect of THT on the mechanical properties of utilizable TiAl-based intermetallic compounds. So, the effect of hydrogen on high temperature deformation behaviors of a utilizable TiAl-based intermetallic compound, Ti-45Al-5Nb-0.8Mo-0.3Y alloy, was investigated. Isothermal hot compression tests of the cast Ti-45Al-5Nb-0.8Mo-0.3Y alloy containing 0 and 0.037%H (mass fraction) were carried out by use of a hot simulator at 1150 and 1200℃, with strain rates of 0.1 and 0.01 s-1, and their microstructures were studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that hydrogen was able to decrease high temperature deformation flow stress and refine microstructure, which led to an improvement of the hot formability. Comparing with the unhydrogenated alloy, the hydrogenated alloy presented a reduction of peak flow stress, approximately 25% when deformed at 1200℃ and strain rate of 0.01 s-1.The lamellar spacing of Hydrogenated Ti-45Al-5Nb-0.8Mo-0.3Y alloy was 265 nm, 77 nm less than that of the unhydrogenated alloy, which was mainly owing to hydrogen-increased β phase content. Besides, the increase of β phase with good high temperature plasticity was one of the main reasons for the decrease of flow stress of the hydrogenated alloy. Hydrogen made the peak strain of true stress and strain curves of the hydrogenated alloy occur earlier than that of the unhydrogenated alloy, which indicated that hydrogen promoted dynamic recrystallization of the hydrogenated alloy to decrease the flow stress. The dynamic recrystallization of β phase was found in the hydrogenated alloy, but not in the unhydrogenated alloy. Comparing with the unhydrogenated alloy, the density of dislocation of the hydrogenated alloy was lower because hydrogen induced the movement of dislocation. More twinning of γ phase occurred in the hydrogenated alloy, which assisted the alloy in high temperature deformation to some extent. In summary, hydrogen-induced dislocation movement, hydrogen-promoted dynamic recrystallization and twinning, and hydrogen-increased β phase content were the main reasons for the decrease of high temperature deformation flow stress of the hydrogenated Ti-45Al-5Nb-0.8Mo-0.3Y alloy.

Key wordsTiAl-based intermetallic compound, hydrogenation    flow Stress    dislocation movement    dynamic recrystallization
收稿日期: 2013-08-22     
基金资助:

国家自然科学基金资助项目51275132

作者简介: 温道胜, 男, 1985年生, 博士生

[1] Loria E A.  Intermetallics, 2001; 9: 997

[2] Li C G, Fu H Z, Yu Q.  Materials in Aerospace. Beijing: National Defense Industry Press,2002: 16
(李成功, 傅恒志, 于翘. 航空航天材料. 北京: 国防工业出版社, 2002: 16)
[3] Venkatesware R K T, Kim Y W, Muhlstein C L, Ritchie R O.  Mater Sci Eng, 1995; A192-193: 474
[4] Kim Y W.  JOM, 1995; 47(7): 39
[5] Wu X H.  Intermetallics, 2006; 14: 1114
[6] Chen Y Y, Niu H Z, Kong F T, Xiao S L.  Intermetallics, 2011; 19: 1405
[7] Anisimova L I.  Met Sci Heat Treat, 1992; 34(2): 143
[8] Li F, Chen Y X, Wan X J, Wang Q J, Liu Y Y.  Aata Metall Sin, 2006; 42: 143
(李芳, 陈业新, 万晓景, 王青江, 刘羽寅. 金属学报, 2006; 42: 143)
[9] Shen C C, Yu C Y, Perng T P.  Acta Mater, 2009; 57: 868
[10] Zhang Y, Zhang S Q.  Scr Mater, 1997; 37: 1315
[11] Zong Y Y.  PhD Dissertation, Harbin Institute of Technology, 2007
(宗影影. 哈尔滨工业大学博士学位论文, 2007)
[12] Zhang Y, Zhang S Q, Tao C H.  Aata Metall Sin, 1996; 32: 235
(张勇, 张少卿, 陶春虎. 金属学报, 1996; 32: 235)
[13] Liu X W.  PhD Dissertation, Harbin Institute of Technology, 2011
(刘鑫旺. 哈尔滨工业大学博士学位论文, 2011)
[14] Lin J P, Cheng G L.  Mater China, 2009; 28(1): 31
(林均品, 陈国良. 中国材料进展, 2009; 28(1): 31)
[15] Sakai T.  J Mater Process Technol, 1995; 53: 349
[16] Goken M, Kempf M, Nix W D.  Acta Mater, 2001; 49: 903
[17] Liu X W, Su Y Q, Luo L S, Liu J P, Guo J J, Fu H Z.  Int J Hydrogen Energy, 2010; 35: 13322
[18] Liu X W, Su Y Q, Luo L S, Li K, Dong F Y, Guo J J, Fu H Z.  Int J Hydrogen Energy, 2011; 36: 3260
[19] Senkov O N, Froes F H.  Int J Hydrogen Energy, 1999; 24: 565
[20] Murzinova M A, Salishchev G A, Afonichev D D.  Int J Hydrogen Energy, 2002; 27: 775
[21] Bashkin I O, Ponyatovskiy Y G, Senkov O N, Malyshev V Y.  Phys Met Metallogr, 1990; 69(2): 67
[22] Shan D B, Zong Y Y, Lv Y, Guo B.  Scr Mater, 2008; 58: 449
[23] Semiatin S L, Seetharaman V, Weiss I.  Mater Sci Eng, 1999; A263: 257
[24] Semiatin S L, Bieler T R.  Acta Mater, 2001; 49: 3565
[25] Zong Y Y, Shan D B, Lv Y, Guo B.  Int J Hydrogen Energy, 2007; 32: 3936
[26] Yuan B G, Li C F, Yu H P, Sun D L.  Mater Sci Eng, 2010; A527: 4185
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[5] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[6] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[7] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[8] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[9] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[10] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[11] 张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
[12] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
[13] 邓亚辉,杨银辉,曹建春,钱昊. 23Cr-2.2Ni-6.3Mn-0.26NNi型双相不锈钢动态再结晶行为研究[J]. 金属学报, 2019, 55(4): 445-456.
[14] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.
[15] 郭祥如, 孙朝阳, 王春晖, 钱凌云, 刘凤仙. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究[J]. 金属学报, 2018, 54(9): 1322-1332.