Please wait a minute...
金属学报  2013, Vol. 49 Issue (11): 1423-1427    DOI: 10.3724/SP.J.1037.2013.00499
  论文 本期目录 | 过刊浏览 |
Al含量对高Nb铸造TiAl合金高温强度和室温塑性的影响
李海昭,张继
钢铁研究总院, 北京 100081
HIGH TEMPERATURE STRENGTH AND AMBIENT DUCTILITY DEPENDENCES ON Al CONTENTS OF HIGH Nb CONTAINING TiAl ALLOYS
LI Haizhao, ZHANG Ji
China Iron & Steel Research Institute Group, Beijing 100081
引用本文:

李海昭,张继. Al含量对高Nb铸造TiAl合金高温强度和室温塑性的影响[J]. 金属学报, 2013, 49(11): 1423-1427.
LI Haizhao, ZHANG Ji. HIGH TEMPERATURE STRENGTH AND AMBIENT DUCTILITY DEPENDENCES ON Al CONTENTS OF HIGH Nb CONTAINING TiAl ALLOYS[J]. Acta Metall Sin, 2013, 49(11): 1423-1427.

全文: PDF(2891 KB)  
摘要: 

固定Nb含量在7% (摩尔分数), 研究了Al含量变化对高Nb铸造TiAl合金高温强度和室温塑性的影响,并根据铸造组织的差异对不同Al含量合金表现出的性能特点进行分析讨论.结果表明, Al含量为46%-49%的高Nb铸造TiAl合金均具有优异的高温强度.其中, 高Al含量合金更具高温强度优势. 分析认为, 在高Nb合金化产生的固溶强化作用基础上,层片组织处于拉伸硬取向以及应变诱发的形变孪晶强化也有可能是高Al含量高Nb铸造TiAl合金900℃具有优异强度的重要机制. 层片组织相对细小的Ti-46Al-7Nb-2.5V-1.0Cr合金室温塑性相对较好,而层片组织处于拉伸硬取向的高Al含量合金室温拉伸塑性很低,但有可能通过后续热处理改善其室温塑性.

关键词 高Nb铸造TiAl合金高温强度室温塑性    
Abstract

The influences of Al contents on the high temperature strength and ambient ductility of cast high Nb containing TiAl alloys were investigated with 7%Nb (mole fraction) addition and Al contents varying from 46%-49%. The macro- and micro-structures were examined. Due to the Nb solid solution strengthening effect, the cast alloy with lowest Al content consisting of a refined lamellar microstructure in equiaxed macro-grains exhibits excellent strength at 900℃ that is comparable with the well developed wrought alloys. The alloys with Al contents higher than 47% contains mostly or fully lamellar colonies with little orientation differences in macro-columnar crystals. Probably because of the lamellar structures with orientation hard to deform and the twining reinforcement, those alloys exhibit the more preponderant strength at 900℃ that can be as high as 595 MPa in the alloy with 47.5%Al. While, the effect of Al contents on ambient ductility becomes reversed as the Hard-to deform lamellar structures present very poor plastic elongation after tensile fractures.

Key wordscast high Nb containing TiAl alloy    high temperature strength    ambient ductility
收稿日期: 2013-08-19     
基金资助:

国家重点基础研究发展计划资助项目2011CB605503

作者简介: 李海昭, 男, 1982年生, 博士生

[1] Chen G L, Zhang W J, Liu Z C, Li S J. In: Kim Y W, Dimiduk D M,Loretto M H eds.,  Gamma Titanium Aluminides 1999, Warrendale, PA: TMS, 1999: 31

[2] Liu Z C, Lin J P, Li S J, Chen G L.  Intermetallics, 2002; 10: 653
[3] Appel F, Oehring M, Paul J D H, Lorenz U. In: Hemker K J, Dimiduk D M,Clemens H, Darolia R, Inui H, Larsen J M, Sikka V K, Thomas M, Whittenberger J D eds.,Structural Intermetallics 2001, Warrendale, PA: TMS, 2001: 63
[4] Yoshihara M, Kim Y W. In: Kim Y W, Dimiduk D M, Loretto M H eds.,Gamma Titanium Aluminides 1999, Warrendale, PA: TMS, 1999: 753
[5] Zhang W J, Liu Z C, Chen G L, Kim Y W.  Mater Sci Eng, 1999; A271: 416
[6] Zhang W J, Deevi S C, Chen G L.  Intermetallics, 2002; 10: 403
[7] Paul J D H, Appel F, Wagner R.  Acta Mater, 1998; 46: 1075
[8] Appel F, Oehring M, Wagner R.  Intermetallics, 2000; 8: 1283
[9] Brossmann U, Oehring M, Appel F. In: Hemker K J, Dimiduk D M, Clemens H,Darolia R, Inui H, Larsen J M, Sikka V K, Thomas M, Whittenberger J D eds.,Structural Intermetallics 2001, Warrendale, PA: TMS, 2001: 191
[10] Tetsui T, Shindo K, Kaji S, Kobayashi S, Takeyama M.  Intermetallics, 2005; 13: 971
[11] Imaev V M, Imaev R M, Oleneva T I, Khismatullin T G.  Phys Met Metall, 2008; 106: 641
[12] Imayev V, Imayev R, Khismatullin T, Guther V, Beck W, Fecht H J.  Scr Mater,2007; 57: 193
[13] Jarvie D J, Voss D.  Mater Sci Eng, 2005; A413--414: 583
[14] Wu X H.  Intermetallics, 2006; 14: 1114
[15] Oehring M, Stark A, Paul J D H, Lippmann T, Pyczak F.  Intermetallics, 2013; 32: 12
[16] Jung J Y, Park J K, Chun C H.  Intermetallics, 1999; 7: 1033
[17] Clemens H, Chladil H F, Wallgram W, Zickler G A, Gerling R, Liss K D,Kremmer S, Guther V, Smarsly W.  Intermetallics, 2008; 16: 827
[18] Witusiewicz V T, Bondar A A, Hecht U, Rex S, Velikanova T Y.  J Alloys Compd,2008; 465: 64
[19] Blackburn M J. In: Jaffee R I, Promisel N E eds.,The Science, Technology and Application of Titanium. Oxford: Pergamon Press, 1970: 663
[20] Kim Y W.  JOM, 1989; 41(7): 24
[21] Appel F, Paul J D H, Oehring M, Buque C, Klinkenberg C, Carneiro T. In:Kim Y W, Carneiro T eds.,  Niobium for High Temperature Applications, Warrendale, PA: TMS, 2004: 139
[22] Zhang H X, Wu C X, Yang K.  J Mater Eng, 2009; (S1): 267
(张华霞, 吴昌新, 杨坤. 材料工程, 2009; (S1): 267)
[23] Bor H Y, Wei C N, Jeng R R, Ko P Y.  Mater Chem Phys, 2008; 109: 334
[24] Inui H, Oh M H, Nakamura A, Yamaguchi M.  Acta Metall Mater, 1992; 40: 3095
[25] Yan L, Tang D, Mi Z L, Guo J.  Hot Working Technol, 2005; (8): 15
(严玲, 唐狄, 米振莉, 郭锦. 热加工工艺, 2005; (8): 15)
[26] Li Z X.  PhD Dissertation, Beijing Institute of Aeronautical Materials, 2000
(李臻熙. 北京航空材料研究院博士学位论文, 2000)
[27] Chen G L, Lin J P, Song X P, Wang Y L, Ren Y R. In: Kim Y W, Carneiro T eds.,Niobium for High Temperature Applications, Warrendale, PA: TMS, 2004: 153
[28] Jiang M Z, Zhang J.  J Iron Steel Res, 2003; 15: 552

(姜明智, 张继. 钢铁研究学报, 2003; 15: 552)

[1] 张旭, 田谨, 薛敏涛, 江峰, 李苏植, 张博召, 丁俊, 李小平, 马恩, 丁向东, 孙军. 2000℃高温高承载的Ta-W难熔合金[J]. 金属学报, 2022, 58(10): 1253-1260.
[2] 朱春雷, 李胜, 李海昭, 张继. 750 ℃热暴露对定向层片组织铸造TiAl合金室温拉伸塑性的影响[J]. 金属学报, 2014, 50(12): 1478-1484.
[3] 崔玉友; 项宏福; 贾清; 杨锐 . 热暴露对铸造Ti-47Al-2Cr-2Nb-0.15B合金的拉伸和疲劳性能的影响[J]. 金属学报, 2005, 41(1): 108-.
[4] 徐颂波;陈俊明. Mg,RE复合微合金化提高Ni_3Al(B)-Cr基合金的室温塑性[J]. 金属学报, 1994, 30(5): 221-224.
[5] 杨文英;吕反修;章守华. Mn,B复合合金化对Ni_3Al室温塑性的影响[J]. 金属学报, 1993, 29(1): 39-42.
[6] 王成国;菊池潮美. Ni_3Al-Mo高温复合材料的拉伸特性[J]. 金属学报, 1991, 27(2): 135-139.