Please wait a minute...
金属学报  2013, Vol. 49 Issue (7): 890-896    DOI: 10.3724/SP.J.1037.2012.00076
  论文 本期目录 | 过刊浏览 |
层片状珠光体组织奥氏体化速率的计算
杨泽南,杨志刚,夏苑,张弛
清华大学材料科学与工程学院先进材料教育部重点实验室, 北京100084
CALCULATION OF AUSTENIZATION RATE OF LAMELLAR PEARLITE
YANG Zenan, YANG Zhigang, XIA Yuan, ZHANG Chi
Key Laboratory of Advanced Materials (Ministry of Education), School ofMaterials Science and Engineering, Tsinghua University, Beijing 100084
引用本文:

杨泽南,杨志刚,夏苑,张弛. 层片状珠光体组织奥氏体化速率的计算[J]. 金属学报, 2013, 49(7): 890-896.
YANG Zenan, YANG Zhigang, XIA Yuan, ZHANG Chi. CALCULATION OF AUSTENIZATION RATE OF LAMELLAR PEARLITE[J]. Acta Metall Sin, 2013, 49(7): 890-896.

全文: PDF(1868 KB)  
摘要: 

层片状珠光体奥氏体化过程相对于球化珠光体的奥氏体化更复杂,由于沿垂直片层方向和沿片层方向的长大速率不同, 需将奥氏体长大沿这2个方向分别处理.利用Thermo Calc软件计算初始组织的平衡成分, 建立单片层模型.通过DICTRA软件模拟垂直片层方向长大的规律, 对比垂直方向长大的抛物线规律,推算Fe-C-M(M=Mn,Cr)合金体系奥氏体化的抛物线生长速率系数.在沿片层方向, 通过简化近似, 并基于组织形貌观察结果, 按照抛物线状界面假设构建长大模型.针对Fe-C二元合金推导了沿片层方向长大的一般式, 并对界面形状进行修正.当假定界面形状达到稳定抛物线形状, 可以通过观察组织形貌得到抛物线因子p和片层厚度λ,代入一般式确定沿片层长大速率. 此外综合考虑界面能的影响, 定性阐释了对称抛物线状界面的形成原因.

关键词 相变层片珠光体奥氏体化动力学合金元素    
Abstract

In the field of phase transformation in steels, much attention has been paid to the austenite decomposition transformation, while austenization has not been vastly investigated. However, most industrial heat treatment is related to this process, which is strongly influenced by initial microstructure. The austenization of lamellar pearlite is relatively complicated compared with spheroidized pearlite due to that in spheroidized pearlite, the angular component can be neglected, so only radius growth is considered. During the past years, much work has been done for austenite's one dimensional growth in spheroidized pearlite. However, less attention has been paid to the austenization of lamellar pearlite, which is a two dimensional growth process. Since the growth rates are different along parallel direction and vertical direction to the lamellar, it is necessary to treat growth behaviors individually in these two directions. In order to further investigate effects of substitutional alloying elements, an Fe-0.6C binary alloy and Fe-0.6C-1M (M=Mn, Cr) ternary alloys were studied. Equilibrium composition and thickness ratio of initial ferrite/cementite mixture microstructure was calculated with software Thermo Calc, and a single-layer structure model is employed. Growth of austenite vertical to lamellar direction is simulated by software DICTRA. It is found that ferrite dissolution was controlled by carbon diffusion in Fe-0.6C-1Mn alloy in 1073 K, while that of Fe-0.6C-1Cr alloy was controlled by Cr diffusion. The simulation results qualitatively agreed with experimental observation result. Compared with the parabolic growth pattern, austenite's parabolic growth coefficient is calculated for various alloys. For growth along lamellar direction, parabolic shape phase boundary is deduced based on a simplified assumption and microstructure observation. A general form of growth rate in this direction is derived for Fe--C binary system, and phase boundary shape is also modified to some extent. If a stable parabolic shape interface is reached, the growth rate parallel to the lamellar direction can also be derived for certain values of parabolic shape parameter p and lamellar spacing λ, which can be decided by microstructure observation. Given the pearlite colony size and ignoring the influence of nucleation incubation, it takes 0.053 s for a pearlite colony to transform to austenite, which is consistent with that pearlite austenization is a relatively fast process. In addition, taking interfacial energy into consideration, the formation of symmetric parabolic phase boundary is rationalized.

Key wordsphase transformation    lamellar pearlite    austenisation    kinetics    alloying element
收稿日期: 2013-02-02     
基金资助:

国家自然科学基金资助项目51071089

作者简介: 杨泽南, 男, 1990年生, 博士生

[1] Mehl R, Hagel W.Prog Met Sci Phys, 1956; 6: 74

[2] Ko T, Cottrell S A.J Iron Steel Inst, 1952; 172: 307
[3] Greninger A B, Troiano A R. Trans AIME, 1949; 185: 590
[4] Krielaart G P, Sietsma J, Van der Zwaag S.Mater Sci Eng, 1997; A237: 216
[5] Roberts R A, Mehl R F. Trans ASM, 1943; 31: 613
[6] Brooks C R.Principles of the Austenitization of Steels. London: Elsevier Applied Science, 1992: 91
[7] Caballero F G, Capdevila C, Garcia de Andres C.  ISIJ Int, 2003; 43: 726
[8] Akbay T, Reed R C, Atkinson C.  Acta Metall Mater, 1994; 47: 1469
[9] Miyamoto G, Usuki H, Li Z D, Furuhara T.  Acta Mater, 2010; 58: 4492
[10] Akbay T, Atkinson C.J Mater Sci, 1996; 31: 2221
[11] Reed R C, Akbay T, Shen Z, Robinson J M, Root J H.  Mater Sci Eng, 1998; A256: 152
[12] Park K T, Lee E G, Lee C S.ISIJ Int, 2007, 47: 294
[13] Caballero F G, Capdevila C, De Andres C G.J Mater Sci, 2002; 37: 3533
[14] Gaude-fugarolas D, Bhadeshia H K D H.J Mater Sci, 2003; 38: 1195
[15] Caballero F G, Capdevila C, De Andres C G.Metall Mater Trans, 2001; 32A: 1283
[16] Rosz A, Gacsi Z, Fuchs E G.  Acta Metall, 1983; 31: 509
[17] Speich G R, Szirmae A.  Trans TMS-AIME, 1969; 245: 1063
[18] Li Z D, Miyamoto G, Yang Z G, Zhang Y D, Zhang C, Furuhara T.  Acta Metall Sin, 2010; 46: 1066
(李昭东, 宫本吾郎, 杨志刚, 张玉朵, 张弛, 古原忠. 金属学报, 2010; 46: 1066)
[19] Karmazin L, Krejci J.  Mater Sci Eng, 1994; A185: L5
[20] Hillert M, Nilsson K, Torndahl L E.J Iron Steel Inst, 1971; 209: 49
[21] Li Z D.  PhD Dissertation, Beijing: Tsinghua University, 2011
(李昭东. 北京: 清华大学博士学位论文, 2011)
[22] Xia Y, Enomoto M, Yang Z G, Li Z D, Zhang C.  Philos Mag, 2012; 93: 1095
[23] Atkinson C, Akbay T, Reed R C.Acta Metall Mater, 1995; 43: 2013
[24] Coates D E.  Metall Trans, 1973; 4: 395
[25] Atkinson C, Akbay T.  Acta Mater, 1996; 44: 2861
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[6] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[7] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[8] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[9] 张伟东, 崔宇, 刘莉, 王文泉, 刘叡, 李蕊, 王福会. 600℃ NaCl盐雾环境下GH4169合金的腐蚀行为[J]. 金属学报, 2023, 59(11): 1475-1486.
[10] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[11] 杜宗罡, 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成. Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能[J]. 金属学报, 2023, 59(10): 1335-1345.
[12] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[13] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[14] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[15] 郭璐, 朱乾科, 陈哲, 张克维, 姜勇. Fe76Ga5Ge5B6P7Cu1 合金的非等温晶化动力学[J]. 金属学报, 2022, 58(6): 799-806.