Please wait a minute...
金属学报  2011, Vol. 47 Issue (1): 1-6    DOI: 10.3724/SP.J.1037.2010.00231
  综述 本期目录 | 过刊浏览 |
Spinodal分解始发形成调幅组织的强化机制
徐祖耀
上海交通大学材料科学与工程学院, 上海 200240
STRENTHENING MECHANISM OF MODULATED STRUCTURE INITIATED BY SPINODAL DECOMPOSITION
XU Zuyao (T.Y.HSU)
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
引用本文:

徐祖耀. Spinodal分解始发形成调幅组织的强化机制[J]. 金属学报, 2011, 47(1): 1-6.
. STRENTHENING MECHANISM OF MODULATED STRUCTURE INITIATED BY SPINODAL DECOMPOSITION[J]. Acta Metall Sin, 2011, 47(1): 1-6.

全文: PDF(1143 KB)  
摘要: 总结了关于spinodal分解形成调幅组织、使合金强化机制的有限文献, 发现合金时效后的屈服强度主要依赖于2个沉淀相的成分差(可由点阵常数差Δa来表征)造成的应力场, 而不依赖于调幅波长和沉淀相的体积分数. 但时效过程中, 合金的屈服强度与Δa的变化不呈线性关系. 本文作者认为这和时效时调幅组织的周期性局部被破坏, 使局部产生应力场的改变有关, 提出屈服强度公式: σc=MBΔa/a, 其中 M包括Taylor因子(或Schmidt因子)和弹性模量项, B表示局部应力场改变Δa/a效果的因子, Δa为两沉淀相的点阵常数差, a为点阵常数平均值. 此式及B值还待验证和估算.
关键词 spinodal分解调幅组织强化机制    
Abstract:Through reviewing of a limited number of literatures regarding strengthening mechanism of modulated structure initiated by spinodal decomposition, it is found that the yield strength of aged alloy is mainly dependent on stress field built by the composition different between two precipitate phases which can be characterized by difference between lattice parameter Δa and is independent on modulate wave length and volume fraction of precipitate phase. However, in the ageing courses, the changes in yield stress and Δa did not show a linear relationship. The present author considers that this may be attributed to the local destruction of periodicity of modulated structure, causing change in stress field during ageing and suggests a yield stress equation: σc=MBΔa/a, in which M denotes a sum factor including Taylor (or Schmidt) factor and elastic constants, B, a factor represent the response of local stress field changed the function of Δa/a, Δa, the difference between lattice parameters of two precipitate phases and a, the average lattice parameter. This equation and the B value need to be confirmed and estimated.
Key wordsspinodal decomposition    modulated structure    strengthening mechanism
收稿日期: 2010-05-13     
作者简介: 徐祖耀, 男, 1921年生, 教授, 中国科学院资深院士
[1] Xu Z Y. Trans Mater Heat Treat, 2010; 31(1): 3

(徐祖耀. 材料热处理学报, 2010; 31(1): 3)

[2] Cahn J W. Acta Metall, 1963; 11: 1275

[3] Kato M, Mori T, Schwarrtz L H. Acta Metall, 1980; 28: 285

[4] Ditchek B, Schwartz L H. Ann Rev Mater Sci, 1979; 9: 219

[5] Hillert M, Cohen M, Averbach B L. Acta Metall, 1961; 9: 536

[6] Dahlgren S D. Metall Trans, 1977; 8A: 347

[7] Bradley A J. Proc Phys Soc, 1940; 52: 80

[8] Hargreaves M E. Acta Crystallogr, 1951; 4: 301

[9] Dahlgren S D. PhD Thesis, UCRL Report No.16846, University of California, Berkeley, Calif., 1966

[10] Dahlgren S D. Metall Trans, 1976; 7A: 1661

[11] Butler E P, Thomas G. Acta Metall, 1970; 18: 347

[12] Livak R J, Thomas G. Acta Metall, 1971; 19: 497

[13] Mott N F, Nabarro F R N. Proc Phys Soc, 1940; 52: 86

[14] Hirsch P B, Kelly A. Philos Mag, 1965; 12: 881

[15] Dillamore J L, Smallman R E, Roberts W J. Philos Mag, 1964; 9: 517

[16] Carpenter R W. Acta Metall, 1967; 15: 1297

[17] Fleischer R L. Electron Microscopy and Strength of Crystals, Hoboken: Wiley, 1963: 980

[18] Miyazaki T, Yajima E, Suga H. Trans JIM, 1971; 12: 119

[19] Ditchek B. PhD Thesis, Northwestern University, Evanston, IL., USA, 1978

[20] Ditchek B, Schwartz L H. Proc 4th Int Conf Strength of Metals and Alloys, 1976; 3: 1319

[21] Hanai Y, Miyazaki T, Mori H. J Mater Sci, 1979; 14: 599
[1] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[2] 陈继林, 冯光宏, 马洪磊, 杨栋, 刘维. Cr-Mo微合金冷镦钢的显微组织、力学性能及强化机制[J]. 金属学报, 2022, 58(9): 1189-1198.
[3] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[4] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[5] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[6] 惠亚军, 潘辉, 刘锟, 李文远, 于洋, 陈斌, 崔阳. 600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制[J]. 金属学报, 2017, 53(8): 937-946.
[7] 韩克昌,刘一奇,林国强,董闯,邰凯平,姜辛. 宽固溶区过渡金属氮化物MNx (M=Ti, Zr, Hf)硬质薄膜原子尺度强化机制研究*[J]. 金属学报, 2016, 52(12): 1601-1609.
[8] 惠亚军,潘辉,周娜,李瑞恒,李文远,刘锟. 650 MPa级V-N微合金化汽车大梁钢强化机制研究*[J]. 金属学报, 2015, 51(12): 1481-1488.
[9] 黄晓旭. 金属强度的尺寸效应*[J]. 金属学报, 2014, 50(2): 137-140.
[10] 李海, , 王芝秀, 苗芬芬, 方必军, 宋仁国, 郑子樵. 预时效+冷轧变形+再时效对6061铝合金微观组织和力学性能的影响[J]. 金属学报, 2014, 50(10): 1244-1252.
[11] 卓海鸥 唐建成 叶楠. 液相原位反应法制备Cu-Y2O3复合材料[J]. 金属学报, 2012, 48(12): 1474-1478.
[12] 高英俊 罗志荣 张少义 黄创高. 相场方法研究Al-Ag合金γ相周围溶质析出过程[J]. 金属学报, 2010, 46(12): 1473-1480.
[13] 王瑞珍; 章洪涛 . 薄板坯连铸连轧工艺生产的Nb、Ti复合微合金化热轧带钢的强化机制[J]. 金属学报, 2007, 43(10): 1082-1090 .
[14] 张长青; 姚可夫 . 深过冷条件下Fe-Ni-P-B合金的纳米晶凝固组织与液相Spinodal分解[J]. 金属学报, 2006, 42(8): 870-874 .
[15] 姚向东;张静华;张志亚;李英敖;赵乃仁;管恒荣;胡壮麒. 合金元素对一种定向凝固钴基高温合金组织和性能的影响[J]. 金属学报, 1995, 31(7): 320-328.