Please wait a minute...
金属学报  2012, Vol. 48 Issue (9): 1033-1041    DOI: 10.3724/SP.J.1037.2012.00174
  论文 本期目录 | 过刊浏览 |
铝合金T型接头激光+GMAW复合热源焊温度场的有限元分析
胥国祥, 武传松, 秦国梁, 王旭友
1) 江苏科技大学江苏省先进焊接技术重点实验室, 镇江 212003
2) 山东大学液固结构演变与加工教育部重点实验室, 济南 250061
3) 机械科学研究总院哈尔滨焊接研究所, 哈尔滨 150080
FINITE ELEMENT ANALYSIS OF TEMPERATURE FIELD IN LASER+GMAW HYBRID WELDING FOR T-JOINT OF ALUMINUM ALLOY
XU Guoxiang, WU Chuansong, QIN Guoliang, WANG Xuyou
1) Key Laboratory of Advanced Welding Technology of Jiangsu Province, Jiangsu University of Science and Technology, Zhenjiang 212003
2) Key Laboratory for Liquid-Solid Structure Evolution and Materials Processing (Ministry of Education), Shandong University, Jinan 250061
3) Harbin Welding Institute, China Academy of Machinery Science & Technology, Harbin 150080
引用本文:

胥国祥 武传松 秦国梁 王旭友. 铝合金T型接头激光+GMAW复合热源焊温度场的有限元分析[J]. 金属学报, 2012, 48(9): 1033-1041.
, , , , . FINITE ELEMENT ANALYSIS OF TEMPERATURE FIELD IN LASER+GMAW HYBRID WELDING FOR T-JOINT OF ALUMINUM ALLOY[J]. Acta Metall Sin, 2012, 48(9): 1033-1041.

全文: PDF(3271 KB)  
摘要: 从宏观传热学出发, 综合考虑焊缝横断面形状特点及接头形式对焊接热流的影响, 建立了适用的T型接头激光+GMAW复合热源焊的组合式热源模型. 利用双椭球体热源模型描述电弧热流和熔滴热焓, 采用热流峰值指数递增--锥体热源模型表征激光热输入, 并通过坐标系转换的方法旋转热源模型, 以考虑焊枪倾斜对焊接热流分布的影响, 推导出适用于T型接头复合焊的热源模型表达公式, 从而简化了T型接头焊接数值模拟中的模型加载过程. 将所建立的模型用于不同焊接条件下铝合金T型接头激光+GMAW单侧双面焊接焊缝形状和尺寸的模拟计算, 计算结果与实验结果吻合较好, 从而证明了模型的准确性和适用性; 利用该模型计算了铝合金T型接头复合焊近缝区不同位置的热循环曲线, 分析了铝合金T型接头复合焊热循环特征, 为其组织和性能的预测奠定了基础.
关键词 铝合金T型接头复合焊热源模型数值模拟    
Abstract:T-welded structures of aluminum alloy are increasingly used in automotive, railway vehicles, aerospace and bridges. However, compared with the simple joint, the T-joint of aluminum alloy is more difficultly welded due to its complex temperature distribution and fluid flow mode in the weld pool. Whether using laser welding or the conventional arc welding process, aluminum alloy T-wleded joint is more prone to welding defects such as crack, pore, undercutting, joint softening, and so on. As a promising joining technology, laser+gas metal arc welding (laser+GMAW) hybrid welding not only combines the advantages of laser welding with those of GMAW, but also overcomes their shortcomings, thus having great potential to achieve high efficiency and high quality welding of aluminum alloy T-joint. So far, however, there is a lack of fundamental investigations involving mathematical modelling and understanding of the hybrid welding process of aluminum alloy T-joint. As key factors determining the weld quality, thermal field has a significant influence on microstructure and properties of T-welded joint. In this work, using the numerical simulation method, the temperature distribution in laser+GMAW hybrid welding of aluminum alloy T-joint was studied. Considering the influence of joint form on welding heat flux, an adaptive combined volumetric heat source model for laser+GMAW hybrid welding for T-joint is developed based on macroscopic mechanism of heat transfer. The arc heat flux and heat content of overheated droplet are described using an double ellipsoid body heat source model, and the laser power is regarded as peak density exponentially increasing-conic body distribution. To take into account the effect of inclination of welding gun on heat flow distribution in T-joint welding, the heat source model is rotated by way of coordinate transformation, thus deducing the formula of combined heat source model suitable to hybrid welding for T-joint. The built model is used to calculate the geometry and dimensions in laser+GMAW hybrid both-sided welding for T-joint of aluminum alloy under different welding conditons, and the simulated resluts agree well with the experimental ones, which indicates the accuracy and applicability of the combined model. Besides, the thermal cycles at different positions in hybrid welding for T-joint of aluminum alloy are computed, and the characteristics of the thermal cycles are analyzed, which will lay the foundation for prediction of microstructure and properties of welded joint.
Key wordsaluminum alloy    T-joint    hybrid welding    heat source model    numerical simulation
收稿日期: 2012-04-05     
基金资助:

中俄国际合作重点课题资助项目2009DFR50170

作者简介: 胥国祥, 男, 1981年生, 讲师, 博士
[1] Zuo T C. Laser Processing of High–Strengh Aluminum Alloy. Beijing: National Defence Industry Press, 2002: 60

(左铁钏. 高强铝合金的激光加工. 北京: 国防工业出版社, 2002: 60)

[2] Zhang S H, Chen K, Xiao R S, Zuo T C. Laser J, 2005; 26(4): 45

(张盛海, 陈铠, 肖荣诗, 左铁钏. 激光杂志, 2005; 26(4): 45)

[3] Defalco J. Weld J, 2007; 86(10): 47

[4] Graf T, Staufer H. Weld J, 2003; 82(1): 42

[5] Bagger C, Olsen F O. J Laser Appl, 2005; 17: 2

[6] Mahrle A, Beyer E. J Laser Appl, 2006; 18: 169

[7] Rayes M, Walz C, Sepold G. Weld J, 2004; 83(5): 147

[8] Alessandro A, Alessandro F, Leonardo O, Giampaolo C. Opt Laser Technol, 2012; 44: 1485

[9] Xu L H, Tian Z L, Peng Y, Zhang X M. Trans China Weld Inst, 2007; 28(2): 38

(许良红, 田志凌, 彭云, 张晓牧. 焊接学报, 2007; 28(2): 38)

[10] Wang J, Takenaka Y, Hongu T, Fujii K, Katayama S. Weld Int, 2007; 21(1): 32

[11] Jiang Y Q, Gu L, Liu J H. Trans China Weld Inst, 2006; 27(6): 104

(姜幼卿, 辜磊, 刘建华. 焊接学报, 2006; 27(6): 104)

[12] Gu L. Master Dissertation, Huazhong University of Science and Technology, Wuhan, 2008

(辜磊. 华中科技大学硕士学位论文, 武汉, 2008)

[13] Jiao C J. Master Dissertation, Beijing Industry Universty, 2009

(焦传江. 北京工业大学硕士学位论文, 2009)

[14] Xu G X, Wu C S, Qin G L, Wang X Y, Lin S Y. Acta Metall Sin, 2008; 44: 478

(胥国祥, 武传松, 秦国梁, 王旭友, 林尚扬. 金属学报, 2008; 44: 478)

[15] Xu G X, Wu C S, Qin G L, Wang X Y, Lin S Y. Acta Metall Sin, 2008; 44: 641

(胥国祥, 武传松, 秦国梁, 王旭友, 林尚扬. 金属学报, 2008; 44: 641)

[16] Xu G X, Wu C S, Qin G L, Wang X Y, Lin S Y. Acta Metall Sin, 2009; 45: 107

(胥国祥, 武传松, 秦国梁, 王旭友, 林尚扬. 金属学报, 2009; 45: 107)

[17] Zhou J, Tsai H L. Int J Heat Mass Trans, 2008; 51: 4353

[18] Cho M H, Farson D F. Weld J, 2007; 86(9): 253

[19] Cho J H, Na S J. Weld J, 2009; 88(2): 35

[20] Piekarska W, Kubiak M. Int J Heat Mass Trans, 2011; 54: 4966

[21] Le Guen E, Fabbro R, Carin M, Coste F. Opt Laser Technol, 2011; 45: 1155

[22] Zhang Z Z, Xu G X, Wu C S. Acta Metall Sin, 2011; 47: 1045

(张转转, 胥国祥, 武传松. 金属学报, 2011; 47: 1045)

[23] Wu C S. Welding Thermal Process and Weld Pool Behaviour. Beijing: China Machine Press, 2007: 24

(武传松. 焊接热过程与熔池形态. 北京: 机械工业出版社, 2007: 24)

[24] Zhang M X, Wu C S, Li K H, Zhang Y M. Trans China Weld Inst, 2007; 28(2): 33

(张明贤, 武传松, 李克海, 张玉明. 焊接学报, 2007; 28(2): 33)

[25] Duan Y G. Master Dissertation, Shanghai Jiaotong University, 2003

(段永钢. 上海交通大学硕士学位论文, 2003)

[26] Zhou W S, Yao J S. Welding of Aluminum and It’s Alloy. Beijing: China Machine Press, 2006: 80

(周万盛, 姚君山. 铝及铝合金的焊接. 北京: 机械工业出版社, 2006: 80)
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[4] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[6] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[7] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[8] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[9] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[10] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[11] 王春辉, 杨光昱, 阿热达克·阿力玛斯, 李晓刚, 介万奇. 砂型3DP打印参数对ZL205A合金铸造性能的影响[J]. 金属学报, 2022, 58(7): 921-931.
[12] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[13] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[14] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[15] 王冠杰, 李开旗, 彭力宇, 张壹铭, 周健, 孙志梅. 高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用[J]. 金属学报, 2022, 58(1): 75-88.