Please wait a minute...
金属学报  2012, Vol. 48 Issue (4): 407-413    DOI: 10.3724/SP.J.1037.2011.00606
  论文 本期目录 | 过刊浏览 |
利用APT对RPV模拟钢中富Cu原子团簇析出的研究
徐刚1,蔡琳玲1,冯柳1,周邦新1,2,刘文庆1,2,王均安1,2
1. 上海大学材料研究所, 上海 200072
2. 上海大学微结构重点实验室, 上海 200444
STUDY ON THE PRECIPITATION OF Cu-RICH CLUSTERS IN THE RPV MODEL STEEL BY APT
XU Gang1, CAI Linling1, FENG Liu1, ZHOU Bangxin1,2,LIU Wenqing1,2, WANG Jun'an1,2
1. Institute of Materials, Shanghai University, Shanghai 200072
2. Laboratory for Microstructures, Shanghai University, Shanghai 200444
引用本文:

徐刚,蔡琳玲,冯柳,周邦新,刘文庆,王均安. 利用APT对RPV模拟钢中富Cu原子团簇析出的研究[J]. 金属学报, 2012, 48(4): 407-413.
, , , , , . STUDY ON THE PRECIPITATION OF Cu-RICH CLUSTERS IN THE RPV MODEL STEEL BY APT[J]. Acta Metall Sin, 2012, 48(4): 407-413.

全文: PDF(759 KB)  
摘要: 提高了Cu含量的核反应堆压力容器(RPV)模拟钢经过880 ℃水淬和660 ℃调质处理,在370 ℃时效不同时间后, 利用原子探针层析技术(APT)进行分析. 结果表明:样品经过1150 h时效后, 富Cu团簇正处于析出过程的形核阶段;经过3000和13200 h时效后析出了富Cu团簇, 团簇的平均等效直径分别为1.5和2.4 nm,团簇中Cu的平均浓度分别为45%和55%(原子分数), 团簇的数量密度约为4.2×1022 m-3; 样品经过13200 h时效后,α-Fe基体中的Cu含量为(0.15±0.02)%,仍然高于Cu在α-Fe中平衡固溶度的理论计算值,说明这时富Cu团簇的析出过程还没有达到平衡. 对渗碳体的分析结果表明,Ni, Si和P偏聚在渗碳体和α-Fe基体的相界面附近, Mn, Mo和S富集在渗碳体中;并没有观察到Cu在相界面上偏聚的现象.
关键词 核压力容器模拟钢富Cu团簇原子探针层析技术相界面    
Abstract:Reactor pressure vessel (RPV) is nonreplaceable component for the pressurized water reactor (PWR) in the nuclear power plants. RPVs are usually made of low alloy ferritic steels and A508-III steel is one type of these materials. After long-term service under the neutron irradiation, the ductile-to-brittle transition temperature (DBTT) of the RPV steel, which is the main parameter used to measure the degree of the embrittlement, will shift towards higher temperature. This phenomenon is termed irradiation-induced embrittlement, and it is a main factor to affect the operation safety and the lifetime of nuclear power plants. It is realized that the irradiation-induced embrittlement is mainly attributed to the precipitation of Cu-rich nanophases with a high number density. The precipitation process of Cu-rich nanophases can be well characterized by an atom probe tomography (APT) analysis for their size, composition and number density, and the Cu-rich nanophases obtained by the APT analysis are usually termed Cu-rich clusters. It is worthwhile to investigate the  precipitation process of Cu-rich clusters by thermal aging for better understanding the mechanism of embrittlement. In order to accelerate the precipitation of Cu-rich clusters, experiment was performed by a RPV model steel containing higher Cu content than commercially available A508-III steel. RPV model steel was prepared by vacuum induction melting with higher content of Cu (0.6%, mass fraction). The specimens of the RPV model steel were tempered at 660 ℃ for 10 h followed by air cooling after water quenching from 880 ℃, and then they were isothermally aged at 370 ℃ for different time. The precipitation process of Cu-rich clusters is investigated by APT analysis. The results show that the Cu-rich clusters are on the stage of the nucleation when the specimens were aged at 370 ℃ for 1150 h. After specimens were aged for 3000 and 13200 h, the average equivalent diameter of the Cu-rich clusters increases from 1.5 nm to 2.4 nm, and the average Cu content in the Cu-rich clusters vary from 45% to 55 % (atomic fraction). The number density of the Cu-rich clusters in both types of the specimens is at the order of 1022 m-3. The Cu concentration in the ferritic matrix is (0.15±0.02)% for the specimen aged at 370 ℃ for 13200 h, which is still higher than the limitation of Cu solubility in the ferritic matrix at 370 ℃. It means that the precipitation process of Cu-rich clusters does not reach the equilibrium state. The analysis results also show that Ni, Si, P atoms, but not Cu atoms, segregate near the interface between the cementite and the ferritic matrix, and Mn, Mo, S atoms are enriched in the cementite.
Key wordsreactor pressure vessel model steel    Cu-rich cluster    atom probe tomography    phase interface
收稿日期: 2011-09-28     
ZTFLH: 

TL341

 
基金资助:

国家重点基础研究发展规划项目2011CB610503, 国家自然科学基金重点项目50931003和上海市重点学科建设项目S30107资助

作者简介: 徐 刚, 男, 1978年生, 博士生
[1] Toyama T, Nagai Y, Tang Z, Hasegawa M, Almazouzi A, van Walle E, Gerard R.  Acta Mater, 2007; 55: 6852

[2] Auger P, Pareige P, Welzel S, Van Duysen J C.  J Nucl Mater,2000; 280: 331

[3] Miller M K, Russell K F, Sokolov M A, Nanstad R K.  J Nucl Mater,2007; 361: 248

[4] Miller M K, Russell K F, Sokolov M A, Nanstad R K.  J Nucl Mater,2003; 320: 177

[5] Miller M K, Nanstad P K, Sokolov M A, Russell K F.  J Nucl Mater,2006; 351: 216

[6] Phythian W J, English C A.  J Nucl Mater, 1993; 205: 162

[7] Fukuya K, Ohno K, Nakata H, Dumbill S, Hyde J M.  J Nucl Mater, 2003; 312: 163

[8] Carter R G, Soneda N, Dohi K, Hyde J M, English C A, Server W L. J Nucl Mater, 2001; 298: 211

[9] Miller M K, Chernobaeva A A, Shtrombakh Y I, Russell K F,Nanstad R K, Erak D Y, Zabusov O O.  J Nucl Mater, 2009; 385: 615

[10] Miller M K, Russell K F.  J Nucl Mater, 2007; 371: 145

[11] Hornbogen E, Glenn R C.  Trans Metall Soc AIME, 1960; 218: 1064

[12] Speich G R, Oriani R A.  Trans Metall Soc AIME, 1965; 233: 623

[13] Goodman S R, Brenners S S, Low J R.  Metall Trans, 1973; 4: 2363

[14] Pizzini S, Roberts K J, Phythian W J, English C A, Greaves G N. Philos Mag Lett, 1990; 61: 223

[15] Othen P J, Jenkins M L, Smith G D W, Phythian W J. Philos Mag Lett, 1991; 64: 383

[16] Othen P J, Jenkins M L, Smith G D W.  Philos Mag, 1994; 70A: 1

[17] Styman P D, Hyde J M, Wilford K, Morley A, Smith G D W. Prog Nucl Energ, 2011, doi:10.1016/j.pnucene.2011.10.010

[18] Chu D F, Xu G, Wang W, Peng J C, Wang J A, Zhou B X. Acta Metall Sin, 2011; 47: 269

     (楚大锋, 徐刚, 王伟, 彭剑超, 王均安, 周邦新. 金属学报,2011; 47: 269)

[19] Xu G, Chu D F, Cai L L, Zhou B X, Wang W, Peng J C. Acta Metall Sin, 2011; 47: 905

     (徐刚, 楚大锋, 蔡琳玲, 周邦新, 王伟, 彭剑超.金属学报, 2011; 47: 905)

[20] Miller M K.  Atom Probe Tomography: Analysis at the Atomic Level.New York: Kliwer Academic/Plenum Publishers, 2000: 25

[21] Starink M J, Zahra A M.  Philos Mag, 1998; 77: 187

[22] Starink M J, Zahra A M.  Thermochim Acta, 1997; 292: 159

[23] Miller M K, Russell K F, Pareige P, Starink M J, Thomson R C. Mater Sci Eng, 1998; A250: 49

[24] Zhu J J, Wang W, Lin M D, Liu W Q, Wang J A, Zhou B X. J Shanghai Univ (Nat Sci), 2008; 5: 525

     (朱娟娟, 王伟, 林民东, 刘文庆, 王均安, 周邦新.上海大学学报(自然科学版), 2008; 5: 525)

[25] Buswell J T, English C A, Herherington M G, Phythian W J,

Smith G D W, Worral G M. In: Steele L E ed.,  Proc 14th Int Symp Effects of Radiation on Materials, Vol.2, Andover, Massachusseetts: The American Society for Testing and Materials, 1990: 127
[1] 朱小绘, 刘向兵, 王润中, 李远飞, 刘文庆. 290℃氩离子辐照对Fe-Cu合金微观组织的影响[J]. 金属学报, 2022, 58(7): 905-910.
[2] 王世宏, 李健, 柴锋, 罗小兵, 杨才福, 苏航. 固溶温度对Fe-19Mn合金的γε相变和阻尼性能的影响[J]. 金属学报, 2020, 56(9): 1217-1226.
[3] 宋元元, 赵明久, 戎利建. Fe-Ni基合金时效过程中γ'相析出的原子探针层析技术研究[J]. 金属学报, 2018, 54(9): 1236-1244.
[4] 沈琴,王晓姣,赵安宇,何益锋,方旭磊,马佳荣,刘文庆. Mn对钢中富Cu相和NiAl相复合析出过程的影响*[J]. 金属学报, 2016, 52(5): 513-518.
[5] 吕昭平, 蒋虽合, 何骏阳, 周捷, 宋温丽, 吴渊, 王辉, 刘雄军. 先进金属材料的第二相强化*[J]. 金属学报, 2016, 52(10): 1183-1198.
[6] 汪波, 王晓姣, 宋辉, 严菊杰, 邱涛, 刘文庆, 李慧. Al-Mg-Si合金时效早期显微组织演变及其对强化的影响*[J]. 金属学报, 2014, 50(6): 685-690.
[7] 王晓姣, 沈琴, 严菊杰, 邱涛, 汪波, 李慧, 刘文庆. 沉淀强化钢中两相区NiAl相和富Cu相的析出特点[J]. 金属学报, 2014, 50(11): 1305-1310.
[8] 刘文庆,刘庆冬,顾剑锋. 原子探针层析技术(APT)最新进展及应用[J]. 金属学报, 2013, 49(9): 1025-1031.
[9] 韦昭召,马骁,张新平. Ni2MnGa合金相界面位错结构及马氏体相变晶体学研究[J]. 金属学报, 2013, 49(2): 187-198.
[10] 徐刚 蔡琳玲 冯柳 周邦新 刘文庆 王均安. 利用APT对RPV模拟钢中界面上原子偏聚特征的研究[J]. 金属学报, 2012, 48(7): 789-796.
[11] 徐刚,蔡琳玲,冯柳,周邦新,王均安,张海生. 富Cu团簇的析出对RPV模拟钢韧-脆转变温度的影响[J]. 金属学报, 2012, 48(6): 753-758.
[12] 宋鲁男 刘嘉斌 黄六一 曾跃武 孟亮. 强变形对Cu-Cr合金组织性能的影响[J]. 金属学报, 2012, 48(12): 1459-1466.
[13] 徐刚 楚大锋 蔡琳玲 周邦新 王伟 彭剑超. RPV模拟钢中纳米富Cu相的析出和结构演化研究[J]. 金属学报, 2011, 47(7): 905-911.
[14] 楚大锋 徐刚 王伟 彭剑超 王均安 周邦新. APT和萃取复型研究压力容器模拟钢中富Cu团簇的析出[J]. 金属学报, 2011, 47(3): 269-274.
[15] 崔桂彬 郭晖 杨善武 贺信莱. 低碳钢中晶界铁素体/原奥氏体界面对贝氏体转变的影响[J]. 金属学报, 2009, 45(6): 680-686.