Please wait a minute...
金属学报  2011, Vol. 47 Issue (7): 905-911    DOI: 10.3724/SP.J.1037.2011.00178
  论文 本期目录 | 过刊浏览 |
RPV模拟钢中纳米富Cu相的析出和结构演化研究
徐刚1), 楚大锋1), 蔡琳玲1), 周邦新1), 王伟1), 彭剑超2)
1) 上海大学材料研究所, 上海 200072
2) 上海大学微结构重点实验室, 上海 200444
INVESTIGATION ON THE PRECIPITATION AND STRUCTURAL EVOLUTION OF Cu-RICH NANOPHASE IN RPV MODEL STEEL
XU Gang1), CHU Dafeng1), CAI Linling1), ZHOU Bangxin1), WANG Wei1), PENG Jianchao2)
1) Institute of Materials, Shanghai University, Shanghai 200072
2) The Key Laboratory for Advanced Micro-Analysis, Shanghai University, Shanghai 200444
引用本文:

徐刚 楚大锋 蔡琳玲 周邦新 王伟 彭剑超. RPV模拟钢中纳米富Cu相的析出和结构演化研究[J]. 金属学报, 2011, 47(7): 905-911.
, , , , , . INVESTIGATION ON THE PRECIPITATION AND STRUCTURAL EVOLUTION OF Cu-RICH NANOPHASE IN RPV MODEL STEEL[J]. Acta Metall Sin, 2011, 47(7): 905-911.

全文: PDF(1350 KB)  
摘要: 提高了Cu含量的核反应堆压力容器(RPV)模拟钢经过880 ℃水淬和660 ℃调质处理后, 在370℃时效6000 h, 利用HRTEM, EDS和原子探针层析(APT)方法研究了纳米富Cu相的析出过程和晶体结构演化. 观察到Cu原子在α-Fe基体的{110}晶面上以3层为周期发生偏聚, 并产生了很大的内应力使晶格发生畸变, 这是富Cu相析出时的形核过程; 随着Cu含量的增加和富Cu区的扩大, 内应力也随着增大, 富Cu区沿着α-Fe基体的\{110\}晶面发生切变, 形成了ABC/BCA/CAB/ABC排列的多孪晶9R结构; Cu含量继续增加, 富Cu相最终转变为fcc结构. 富Cu相的尺寸在1-8 nm范围内, 数量密度为0.71×1023 m-3. 富Cu相中还含有3%-8%(质量分数)的Ni和Mn, 并且在相界面上发生偏聚, 从而抑制了富Cu相的长大.
关键词 核压力容器模拟钢纳米富Cu相高分辨电镜原子探针层析技术    
Abstract:The crystal structure of Cu-rich nanophase in reactor pressure vessel (RPV) model steel was investigated by means of HRTEM, EDS and APT methods. RPV model steel was prepared by vacuum induction furnace melting with higher content of Cu (0.6%, mass fraction). The ingot about 40 kg in weight was forged and hot rolled to 4 mm in thickness and then cut to specimens of 40 mm×30 mm. Those specimens were further heat treated by 880 ℃ for 0.5 h water quenching and 660 ℃ for 10 h tempering, and finally aged at 370 ℃ for 6000 h. It was observed that the Cu atoms segregated on {110} planes of α-Fe matrix in a period every three layers and the distortion of crystal lattice was induced by inner stress produced by the segregation of Cu atoms during the nucleation of the precipitation of Cu-rich nanophase. The inner stress in Cu-rich regions enhanced with the increase of Cu concentration as well as the enlargement in size. It was also observed that the Cu-rich regions underwent a transformation from bcc structure to 9R structure with twins by means of a shear along the {110} plane of α-Fe matrix. Finally, the Cu-rich clusters transformed to fcc  structure with further increase of Cu content. The results obtained by APT analysis show that the equivalent diameter and the number density of Cu-rich clusters are about 1-8 nm and 0.71×1023 m-3, respectively. The content of 3%-8% Ni and Mn within the Cu-rich clusters was detected. It is suggested that the growth of Cu-rich clusters was restrained by the segregation of Ni and Mn atoms on the boundaries around the Cu-rich clusters.
Key wordsreactor pressure vessel model steel    Cu-rich nanophase    HRTEM    atom probe tomography method
收稿日期: 2011-03-30     
基金资助:

国家重点基础研究发展计划项目2011CB610503, 国家自然科学基金重点项目50931003, 上海市重点学科建设项目S30107和上海大学创新基金项目A.16011010003资助

作者简介: 徐刚, 男, 1978年生, 博士生
[1] Toyama T, Nagai Y, Tang Z, Hasegawa M, Almazouzi A, van Walle E, Gerard R. Acta Mater, 2007; 55: 6852

[2] Miller M K, Russell K F, Sokolov M A, Nanstad R K. J Nucl Mater, 2007; 361: 248

[3] Fujii K, Fukuya K, Nakata N, Hono K, Nagai Y, Hasegawa M. J Nucl Mater, 2005; 340: 247

[4] Miller M K, Russell K F. J Nucl Mater, 2007; 371: 145

[5] Miller M K, Nanstad P K, Sokolov M A, Russell K F. J Nucl Mater, 2006; 351: 216

[6] Hornbogen E, Glenn R C. Trans Metall Soc AIME, 1960; 218: 1064

[7] Speich G R, Oriani R A. Trans Metall Soc AIME, 1965; 233: 623

[8] Goodman S R, Brenners S S, Low J R. Metall Trans, 1973; 4: 2363

[9] Buswell J T, English C A, Herherington M G, Phythian W J, Smith G D W, Worral G M. In: Steele L E ed., Proc 14th Int Symp Effects of Radiation on Materials, Vol.2, Andover, Massachusseetts: The American Society for Testing and Materials, 1990: 127

[10] Phythian W J, Foreman A J E, English C A, Buswell J T, Hetherington M, Roberts K, Pizzini S. In: Steele L E ed., Proc 15th Int Symp Effects of Radiation on Materials, Nashvile, Tennessee: The American Society for Testing and Materials, 1990: 131

[11] Pizzini S, Roberts K J, Phythian W J, English C A, Greaves G N. Philos Mag Lett, 1990; 61: 223

[12] Othen P J, Jenkins M L, Smith G D W, Phythian W J. Philos Mag Lett, 1991; 64: 383

[13] Othen P J, Jenkins M L, Smith G D W. Philos Mag, 1994; 70A: 1

[14] Wang W, Zhu J J, Lin M D, Zhou B X, Liu W Q. J Univ Sci Technol Beijing, 2010; 1: 39

(王伟, 朱娟娟, 林民东, 周邦新, 刘文庆. 北京科技大学学报, 2010; 1: 39)

[15] Sheng Z Q, Xiao H, Peng F. Nucl Power Eng, 1988; 9: 49

(盛钟琦, 肖红, 彭峰. 核动力工程, 1988; 9: 49)

[16] Yong Q L. Secondary Phase in Steel. Beijing: Metallurgical Industry Press, 2006: 127

(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 127)

[17] Osetsky Y N, Serra A. Philos Mag, 1996; 73A: 249

[18] Lebouar Y. Acta Mater, 2001; 49: 2661

[19] Konno T J, Hiraga K, Kawasaki M. Scr Mater, 2001; 44: 2303

[20] Berg L K, Gjφnnes J, Hansen V, Li X Z, Knutson–Wedel M,Waterloo G, Schryvers D,Wallenberg L R. Acta Mater, 2001; 49: 3443

[21] Ping D H, Hono K, Nie J F. Scr Mater, 2003; 48: 1017

[22] Chu D F, Xu G, Wang W, Peng J C, Wang J A, Zhou B X. Acta Metall Sin, 2011; 47: 269

(楚大锋, 徐刚, 王伟, 彭剑超, 王均安, 周邦新. 金属学报, 2011; 47: 269)
[1] 赵宝军,赵宇宏,孙远洋,杨文奎,侯华. Mn含量对Fe-Cu-Mn合金纳米富Cu析出相影响的相场法研究[J]. 金属学报, 2019, 55(5): 593-600.
[2] 宋元元, 赵明久, 戎利建. Fe-Ni基合金时效过程中γ'相析出的原子探针层析技术研究[J]. 金属学报, 2018, 54(9): 1236-1244.
[3] 沈琴,王晓姣,赵安宇,何益锋,方旭磊,马佳荣,刘文庆. Mn对钢中富Cu相和NiAl相复合析出过程的影响*[J]. 金属学报, 2016, 52(5): 513-518.
[4] 汪波, 王晓姣, 宋辉, 严菊杰, 邱涛, 刘文庆, 李慧. Al-Mg-Si合金时效早期显微组织演变及其对强化的影响*[J]. 金属学报, 2014, 50(6): 685-690.
[5] 王晓姣, 沈琴, 严菊杰, 邱涛, 汪波, 李慧, 刘文庆. 沉淀强化钢中两相区NiAl相和富Cu相的析出特点[J]. 金属学报, 2014, 50(11): 1305-1310.
[6] 刘文庆,刘庆冬,顾剑锋. 原子探针层析技术(APT)最新进展及应用[J]. 金属学报, 2013, 49(9): 1025-1031.
[7] 徐刚 蔡琳玲 冯柳 周邦新 刘文庆 王均安. 利用APT对RPV模拟钢中界面上原子偏聚特征的研究[J]. 金属学报, 2012, 48(7): 789-796.
[8] 徐刚,蔡琳玲,冯柳,周邦新,王均安,张海生. 富Cu团簇的析出对RPV模拟钢韧-脆转变温度的影响[J]. 金属学报, 2012, 48(6): 753-758.
[9] 徐刚,蔡琳玲,冯柳,周邦新,刘文庆,王均安. 利用APT对RPV模拟钢中富Cu原子团簇析出的研究[J]. 金属学报, 2012, 48(4): 407-413.
[10] 楚大锋 徐刚 王伟 彭剑超 王均安 周邦新. APT和萃取复型研究压力容器模拟钢中富Cu团簇的析出[J]. 金属学报, 2011, 47(3): 269-274.
[11] 钟震晨. 铝基纳米复合材料的电子显微镜研究[J]. 金属学报, 1996, 32(2): 215-218.
[12] 平德海;秦晓英;李斗星;张立德;叶恒强. Ag-Cu纳米合金的微观结构[J]. 金属学报, 1996, 32(10): 1087-1092.
[13] 平德海;李斗星;叶恒强;吴希俊. 几种纳米固体材料的显微结构特征[J]. 金属学报, 1995, 31(2): 79-84.
[14] 吴玉琨;黄建宇;何安强;胡魁毅;孟祥敏. 难互溶Cu-Fe系机械合金化的高分辨电镜研究[J]. 金属学报, 1993, 29(12): 39-46.