Please wait a minute...
金属学报  2011, Vol. 47 Issue (11): 1403-1407    DOI: 10.3724/SP.J.1037.2011.00320
  论文 本期目录 | 过刊浏览 |
MTFM的建立及在铝合金筒体结构焊接变形预测中的应用
孙延军1), 李德成2), 张增磊1), 鄢东洋3), 史清宇1)
1) 清华大学机械工程系先进成形制造教育部重点实验室, 北京 100084
2) 中国运载火箭技术研究院首都航天机械公司, 北京 100074
3) 北京宇航系统工程研究所, 北京 100076
ESTABLISHMENT OF MOVING TEMPERATURE FUNCTION METHOD AND ITS APPLICATION ON WELDING DISTORTION PREDICTION OF CYLINDRICAL AND CONICAL ALUMINUM ALLOY STRUCTURES
SUN Yanjun1), LI Dengcheng2), ZHANG Zenglei1), YAN Dongyang3), SHI Qingyu1)
1) Advanced Materials Processing Technology, Ministry of Education Key Laboratory, Department of Mechanical Engineering, Tsinghua University, Beijing 100084
2) China Academy of Launch Vehicle Technology, Capital Aerospace Machinery Corporation, Beijing 100076
3) Beijing Institute of Astronautical Systems Engineering, Beijing 100076
引用本文:

孙延军 李德成 张增磊 鄢东洋 史清宇. MTFM的建立及在铝合金筒体结构焊接变形预测中的应用[J]. 金属学报, 2011, 47(11): 1403-1407.
, , , , . ESTABLISHMENT OF MOVING TEMPERATURE FUNCTION METHOD AND ITS APPLICATION ON WELDING DISTORTION PREDICTION OF CYLINDRICAL AND CONICAL ALUMINUM ALLOY STRUCTURES[J]. Acta Metall Sin, 2011, 47(11): 1403-1407.

全文: PDF(1113 KB)  
摘要: 应用以温度为控制变量且体现焊接温度场瞬时移动特性的高效计算方法-移动温度函数法(moving temperature function method, MTFM), 综合采用材料性能依赖于温度及温度历史的材料新模型, 建立了4种几何尺寸铝合金筒体结构的焊接过程三维有限元模型, 预测了焊后母线下凹变形. 同时, 应用传统顺序耦合计算方法建立了有限元模型以对比计算效率与精度, 并进行了实验验证. 与传统顺序耦合计算方法相比, MTFM 耗时均缩短60%以上, 大幅提高了计算效率; 所预测的铝合金筒体结构焊后下凹变形量与传统顺序耦合计算方法模拟结果以及实际测量结果均吻合较好, 计算误差小于10%. 本文所应用的高效焊接数值模拟计算方法适用于不同几何尺寸铝合金筒体结构, 一定程度上说明了MTFM对不同结构和尺寸的焊接结构焊后变形预测的适用性.
关键词 焊接数值模拟高效计算大型结构    
Abstract:Long computational time for thermo-mechanical simulation of welding distortion and residual stresses hinders the application of this technique in large welded structure. It is of urgent need to develop a high efficiency numerical simulation strategy for welding process. The traveling temperature function method, in which the quasi--steady state character of welding process was exploited, was applied in the present study to improve the efficiency of welding simulation. Also the temperature and temperature history dependent material property models were established and applied. The finite elements analysis (FEA) models of 4 types of cylindrical and conical aluminum alloy structures, with different geometric shapes and dimensions, were built to analyze. Traditional moving heat source models were also established for these 4 structures to compare with the traveling temperature function method. The welding induced distortions were predicted by both methods for all the structures. The time cost of the traveling temperature function method is less than 40% of that of the traditional moving heat source method. While the computed distortion trends and values of two simulation methods were consistent. Finally the validation experiments were carried out and the distortions were measured. The measured distortions were compared with the numerical simulation results of two methods. The comparison show goods agreement. The errors between computed results from the two methods and the experimental results
are no more than 10% for all types of structures. This indicates that the numerical simulation models are not only
highly efficient, but also suitable for different types of cylindrical and conical aluminum alloy structures. So the traveling temperature function method is a high efficiency numerical simulation method with abroad applicability. This is a beneficial attempt and a novel idea to driving numerical simulation method in application of the large welded structures.
Key wordswelding    numerical simulation    high-efficiency simulation    large welded structures
收稿日期: 2011-05-20     
ZTFLH: 

TG404

 
基金资助:

国家高技术研究发展计划资助项目 2006AA04Z139

作者简介: 孙延军, 男, 1986年生, 硕士生
[1] Tian X T. Weld Structure. Beijing: China Machine Press, 1982: 1

(田锡唐. 焊接结构. 北京: 机械工业出版社, 1982: 1)

[2] Dike J, Cadden C, Corderman C, Schultz C, McAninch M. Proc 2nd Int Conf on Trends in Welding Research, Ohio: ASM International, 1996: 57

[3] Lindgren L. J Therm Stress, 2001; 24: 305

[4] Deng D, Murakawa H, Liang W. Comput Methods Appl Mech Eng, 2007; 196: 4613

[5] Nishikawa H, Serizawa H, Murakawa H. Sci Technol Weld Join, 2007; 12(2): 147

[6] Ueda Y,Wang J H, Murakawa H, Yuan M G. Trans JWRI, 1992; 21: 251

[7] Ueda Y,Wang J H, Murakawa H, Yuan M G. Trans JWRI, 1993; 22: 289

[8] Kiyoshima S, Deng D, Ogawa K, Yanagida N, Satio K. Comp Mater Sci, 2009; 46: 987

[9] Deng D, Kiyoshima S, Ogawa K, Yanagida N, Satio K. Nucl Eng Des, 2010; 241: 46

[10] Brown S, Song H. Weld J, 1992; 71: 55

[11] Shi Q Y, Lu A L, Zhao H Y, Wu A P. Acta Metall Sin (Engl lett), 2000; 13: 33

[12] Barsoum Z, Lundback A. Eng Fail Anal, 2009; 16: 2281

[13] Ueda Y, Murakawa H, Nakacho K, Ma N X. Trans JWRI, 1995; 24(2): 73

[14] Mollicone P, Camilleri D, Gray T G R, Comlekci T. J Mater Process Technol, 2006; 176: 77

[15] Bachorski A, Painter M J, Smailes A J, Wahab M A. J Mater Process Technol, 1999; 92–93: 405

[16] Mrvar P, Medved J, Kastelic S. Weld J, 2011; 90: 148S

[17] Cai Z P, Zhao H Y, Wu S, Lu A L, Shi Q Y. Chin J Mech Eng, 2001; 37(4): 25

(蔡志鹏, 赵海燕, 吴甦, 鹿安理, 史清宇. 机械工程学报, 2001; 37(4): 25)

[18] Lu A L, Shi Q Y, Zhao H Y, Wu A P, Cai Z P, Wang P. China Mech Eng, 2000; 11(12): 201

(鹿安理, 史清宇, 赵海燕, 吴爱萍, 蔡志鹏, 王鹏. 中国机械工程, 2000; 11(12): 201)

[19] Yan D Y, Shi Q Y, Wu A P, Silvanus J. Trans Chin Weld Inst, 2009; 30(8): 77

(鄢东洋, 史清宇, 吴爱萍, Silvanus J. 焊接学报, 2009; 30(8): 77)

[20] Zhang Z L, Shi Q Y, Liu Y, Yan D Y. Trans Chin Weld Inst, 2009; 30(2): 45

(张增磊, 史清宇, 刘园, 鄢东洋. 焊接学报, 2009; 30(2): 45)
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[5] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[6] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[7] 陈华斌, 陈善本. 复杂场景下的焊接智能制造中的信息感知与控制方法[J]. 金属学报, 2022, 58(4): 541-550.
[8] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[9] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
[10] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[11] 王聪, 张进. 埋弧焊中焊剂对焊缝金属成分调控的研究进展[J]. 金属学报, 2021, 57(9): 1126-1140.
[12] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[13] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[14] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[15] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.