Please wait a minute...
金属学报  2011, Vol. 47 Issue (11): 1396-1402    DOI: 10.3724/SP.J.1037.2011.00293
  论文 本期目录 | 过刊浏览 |
微合金钢热变形组织与性能演变的CA模拟
支颖1), 刘相华1), 喻海良2), 王振范1)
1) 东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819
2) School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
SIMULATION OF MICROSTRUCTURE AND PROPERTIES EVOLUTION OF MICRO ALLOYED STEEL DURING HOT DEFORMATION BY CELLULAR AUTOMATON
ZHI Ying1), LIU Xianghua1), YU Hailiang2), WANG Zhenfan1)
1) State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
2) School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
引用本文:

支颖 刘相华 喻海良 王振范. 微合金钢热变形组织与性能演变的CA模拟[J]. 金属学报, 2011, 47(11): 1396-1402.
, , , . SIMULATION OF MICROSTRUCTURE AND PROPERTIES EVOLUTION OF MICRO ALLOYED STEEL DURING HOT DEFORMATION BY CELLULAR AUTOMATON[J]. Acta Metall Sin, 2011, 47(11): 1396-1402.

全文: PDF(4084 KB)  
摘要: 建立了预测微合金钢热变形奥氏体动态再结晶组织与性能演变的元胞自动机模型. 采用基于位错密度的动态再结晶理论, 主要考虑动态再结晶的形核、晶粒长大, 实现对动态再结晶过程晶粒形态、体积分数及晶粒尺寸的定量化表征及其演变过程的可视化描述, 得了位错密度及流变应力等参数. 模拟得到的动态再结晶组织形貌及基于位错密度变化计算出的流变应力与实验结果吻合较好.
关键词 元胞自动机微合金钢动态再结晶    
Abstract:A model for prediction of the dynamic recrystallization microstructure and properties evolution of hot deformed austenite for micro alloyed steel by cellular automaton (CA) was developed. The theoretical modeling of dynamic recrystallization was on the basis of dislocation density, and the nucleation and grain growth of dynamic recrystallization were considered. The microstructure evolution of austenite dynamic recrystallization, such as the grain shape, grain size and volume fraction, was predicted quantitatively and visually described. Moreover the distribution and variation of the dislocation density and flow tress were obtained. Meanwhile, the microstructure and variation of the flow tress of micro alloyed< steel during hot deformation were measured by experiments. The measured results were in good agreement with the CA calculation results.
Key wordscellular automaton    micro alloyed steel    dynamic recrystallization
收稿日期: 2011-05-09     
基金资助:

国家自然科学基金项目51174249, 50974039和51034009, 国家重点基础研究发展计划项目2011CB606306-2及高等学校博士学科点专项科研基金项目20090042120005资助

作者简介: 支颖, 女, 1978年生, 讲师, 博士
[1] Wang Y M, Li M Y, Wei G. Control Rolling and Control Cooling of Steel Plates. Beijing: Metallurgical Industry Press, 2007: 20

(王有铭, 李曼云, 韦光. 钢材的控制轧制和控制冷却. 北京: 冶金工业出版社, 2007: 20)

[2] Zhu L J, Wu D, Zhao X M. J Northeastern Univ, 2006; 27): 987

(朱丽娟, 吴迪, 赵宪明. 东北大学学报, 2006; 27: 987)

[3] Ghosh S, Gabane P, Bose A, Chakraborti N. Comp Mater Sci, 2009; 45: 96

[4] Yang B J, Hattiangadi A, Li W Z, Zhou G F, McGreevy T E. Mater Sci Eng, 2010; A527: 2978

[5] Zheng C W, Xiao N M, Hao L H, Li D Z, Li Y Y. Acta Mater, 2009; 57: 2956

[6] Hesselbarth H W, Gobe1 I R. Acta Metall, 1991; 39: 2135

[7] Davies C H J. Scr Mater, 1995; 33: 1139

[8] Zhen C W, Lan Y J, Xiao N M, Li D Z, Li Y Y. Acta Metall Sin, 2006; 42: 474

(郑成武, 兰勇军, 肖纳敏, 李殿中, 李依依. 金属学报, 2006; 42: 474)

[9] Liu X H. Acta Metall Sin, 2010; 46: 1025

(刘相华. 金属学报, 2010; 46: 1025)

[10] Zhan X H, Wei Y H, Dong Z B. J Mater Process Technol, 2008; 208: 1

[11] Yazdipour N, Davies C H J, Hodgson P D. Comput Mater Sci, 2008; 44: 566

[12] Chen F, Cui Z S, Liu J, Chen W, Chen S J. Mater Sci Eng, 2010; A527: 5539

[13] Bos C, Mecozzi M G, Sietsma J. Comput Mater Sci, 2010; 48: 692

[14] Li D Z, Xiao N M, Lan Y J, Zheng C W, Li Y Y. Acta Mater, 2007; 55: 6234

[15] Mao W M, Zhao X B. Recrystallization and Grain Growth of Metal. Beijing: Metallurgical Industry Press, 1994: 213

(毛卫民, 赵新兵. 金属的再结晶与晶粒长大. 北京: 冶金工业出版社, 1994: 213)

[16] Serajzadeh S, Taheri A K. Mater Des, 2002; 23: 271

[17] Cabrera J M, Omar A A, Jonas J J, Prado J M. Metall Mater Trans, 1997; 28A: 2233

[18] Serajzadeh S, Taheri A K. Mech Res Comum, 2003; 30: 87

[19] Zhu L J, Wu D, Zhao X M. J Iron Steel Res Int, 2007; 14(2): 61

[20] Zheng C W, Xiao N M, Li D Z, Li Y Y. Comput Mater Sci, 2008; 44: 507

[21] Mandal S, Sivaprasad P V, Venugopal S, Murthy K P N. Modell Simul Mater Sci Eng, 2006; 14: 1053

[22] Lu Y, Zhang L W, Deng X H, Pei J B, Wang S, Zhang G L. Acta Metall Sin, 2008; 44: 292

(卢瑜, 张立文, 邓小虎, 裴继斌, 王赛, 张国梁. 金属学报, 2008; 44: 292)

[23] Hallberg H, Wallin M, Ristinmaa M. Comput Mater Sci, 2010; 49: 25

[24] Guo H M, Liu X B, Yang X J. J Mater Eng, 2003; 8: 23

(郭洪民, 刘旭波, 杨湘杰. 材料工程, 2003; 8: 23)

[25] Li Z H. Master Dissertation. Shenyang: Northeastern University, 2004

(李治华. 东北大学硕士学位论文, 沈阳, 2004)

[26] Jin W Z, Wang L, Liu X H, Wang Z F. Mech Eng Mater, 2005; 29(10): 10

(金文忠, 王 磊, 刘相华, 王振范. 机械工程材料, 2005; 29(10): 10)
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[5] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
[6] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[7] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[8] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[9] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[10] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[11] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[12] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[13] 张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
[14] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
[15] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.