Please wait a minute...
金属学报  2011, Vol. 47 Issue (8): 1055-1060    DOI: 10.3724/SP.J.1037.2011.00080
  论文 本期目录 | 过刊浏览 |
电镀Zn-In合金在碱性溶液中的电化学行为
周合兵1, 2, 3, 梁曼2, 3,吕东生2, 3,许梦清2, 3, 李伟善1, 2, 3
1. 华南理工大学材料科学与工程学院, 广州 510641
2. 电化学储能材料与技术教育部工程研究中心, 广州 510631
3. 广东省高等学校电化学储能与发电技术重点实验室, 广州 510631
ELECTROCHEMICAL BEHAVIORS OF ZINC–INDIUM ALLOY ELECTROPLATING IN ALKALINE SOLUTIONS
ZHOU Hebing 1,2,3, LIANG Man 2,3, L¨U Dongsheng 2,3, XU Mengqing 2,3, LI Weishan 1,2,3
1. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641
2. Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education),South China Normal University, Guangzhou 510631
3. Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes, South China Normal University, Guangzhou 510631
引用本文:

周合兵 梁曼 吕东生 许梦清 李伟善. 电镀Zn-In合金在碱性溶液中的电化学行为[J]. 金属学报, 2011, 47(8): 1055-1060.
, , , . ELECTROCHEMICAL BEHAVIORS OF ZINC–INDIUM ALLOY ELECTROPLATING IN ALKALINE SOLUTIONS[J]. Acta Metall Sin, 2011, 47(8): 1055-1060.

全文: PDF(690 KB)  
摘要: 用电沉积的方法在Ni基体上制得了Zn--In合金, 采用ICP, SEM和EDS研究了电镀Zn-In合金的组织和成分, 采用LSV, CV和EIS等方法研究了不同镀时下电镀Zn-In合金在碱性溶液中的电化学行为.结果表明, 沉积时间越长,合金中In的含量越高; 与镀时为20和30 min相比, 10 min为较佳镀时, 在此镀时下,Ni基体表面能形成均匀平整的Zn--In合金, 延长镀时, 会因为局部In颗粒生长过快使Zn-In合金均匀性变差; Zn-In合金中的In能提高Zn电极的析氢过电位,增加Zn阳极溶解电阻, 可有效抑制Zn自腐蚀共轭反应的两支;  当Zn活化溶解时,In的存在还提供了骨架的作用, 为OH-通过合金表面跟内层的Zn反应提供了通道,使得Zn的致钝电位发生正移, 活化电位区间也得到拓宽, Zn的钝化得到延缓,放电深度得到加强, 放电容量得到提高; Zn的活化溶解产物易于在In电极表面还原,Zn的充放电性能得到改善.
关键词 电镀 Zn-In合金 碱性溶液 电化学行为    
Abstract:Zinc–indium alloy electrodes based on nickel substrate were prepared by a simple electroplating technique. The content of indium element in zinc–indium alloy became higher with increase in electroplating time. The effects of indium in zinc–indium alloy coating with different electroplating times on the electrochemical behaviors of zinc in alkaline solutions were investigated by inductively coupled ICP, SEM, EDS, LPS, CV and EIS. The results showed that ten minutes was the best electroplating time among the investigated electroplating times. At the plating time of ten minutes, uniform and smooth Zn–In alloy coating could be formed on the surface of nickel substrate. However, as electroplating time went on the uniformity and homogeneity of Zn–In alloy coating became much poorer because of the formation of the local large indium particles resulting from the priority growth. The electrochemical measurements showed that indium in zinc–indium alloy coating could enhance the overpotential of hydrogen evolution and the anodic dissolution resistance of zinc. This means that indium could inhibit effectively the conjugated reaction of zinc corrosion in alkaline electrolyte. Besides, indium could provide the skeleton support when zinc–indium alloy dissolved in alkaline solution. The skeleton support offered the path for OH− species passing through the surface layer of zinc–indium alloy to react with zinc in alloy inner. These effects made the passivation potential of zinc in alkaline solution shifted in positive direction. Indium could also broaden the potential region for the active dissolution of zinc and postpone the passivation of zinc. The depth of discharge of zinc in alkaline electrolyte could be improved in the presence of indium in zinc–indium alloy coating with appropriate content. Accordingly, the discharge capacity of zinc in alkaline electrolyte could be raised to a certain degree. The indium with appropriate contents in Zn–In alloy coating could favor the reduction of zinc oxide products. The charge–discharge performance of zinc could also be improved to a great extent.
Key wordselectroplate    zinc–indium alloy    alkaline electrolyte    electrochemical behavior
收稿日期: 2011-02-21     
基金资助:

广东省自然科学基金项目10351063101000001和10451063101006346资助

作者简介: 周合兵, 男, 1979年生, 博士生, 副研究员
[1] Jia Z, Zhou D R, Zhang C F. Trans Nonferrous Met Soc China, 2005; 15: 15

[2] Bard A J, Parsons R, Jordan J. Standard Potential In Aqueous Solution. New York and Basel: Marcel Dekker, 1985: 249

[3] Milazzo G, Caroli S. Tables of Standard Electrode Potentials. New York: John Wiley & Sons, 1978: 95

[4] Zhou H B, Li W S. J Chin Soc Corros Prot, 2005; 25: 25

(周合兵, 李伟善. 中国腐蚀与防护学报, 2005; 25: 25)

[5] Hukovic M M, Omanovic S. J Electroanal Chem, 1998; 455: 181

[6] Saidman S B, Bellocq E C, Bessone J B. Electrochem Acta, 1990; 35: 329

[7] Huo H W, Zheng Z G, Li Mingsheng. Rare Met Mater Eng, 2005; 34: 1345

(霍宏伟, 郑志国, 李明升. 稀有金属材料与工程, 2005; 34: 1345)

[8] Huang T H, Jin H, Zhu S B. Chin Pat, 200610037178.9, 2006

(黄天候, 金海, 朱生波. 中国专利, 200610037178.9, 2006)

[9] Zhou H B, Yang M Z, Li W S. Rare Met Mater Eng, 2008; 37: 404

(周合兵, 杨美珠, 李伟善. 稀有金属材料与工程, 2008; 37: 404)

[10] Cai Z P, Zhou H B, Li W S. Rare Met Mater Eng, 2009; 38: 1676

(蔡宗平, 周合兵, 李伟善. 稀有金属材料与工程, 2009; 38: 1676)

[11] Roventi G, Bellezze T, Fratesi R. Electrochem Acta, 2006, 51: 2691

[12] G´omez E, Alcobe X, Vall´es. J Electroanal Chem, 1999; 475: 66

[13] Wang J M, Lu Y, Zhang J, Cao C. Corros Sci, 1998, 40: 1161

[14] Cao C N. Principles of Electrochemistry of Corrosion, 3rd Ed. Beijing: Chemical Industry Press, 2008: 187

(曹楚南. 腐蚀电化学原理第三版, 北京: 化学工业出版社, 2008: 187)
[1] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[2] 程伟丽, 谷雄杰, 成世明, 陈宇航, 余晖, 王利飞, 王红霞, 李航. 镁空气电池阳极用挤压态Mg-2Bi-0.5Ca-0.5In合金的放电性能和电化学行为[J]. 金属学报, 2021, 57(5): 623-631.
[3] 苑洪钟,刘智勇,李晓刚,杜翠薇. 外加电位对X90钢及其焊缝在近中性土壤模拟溶液中应力腐蚀行为的影响[J]. 金属学报, 2017, 53(7): 797-807.
[4] 陈思,秦飞,安彤,王瑞铭,赵静毅. 退火工艺对硅通孔填充Cu微结构演化与胀出行为的影响*[J]. 金属学报, 2016, 52(2): 202-208.
[5] 洪川,高运明,杨创煌,童志博. 1673 K下SiO2-CaO-MgO-Al2O3熔渣中 Ni2+的电化学行为*[J]. 金属学报, 2015, 51(8): 1001-1009.
[6] 郭跃岭, 韩恩厚, 王俭秋. 锻造和热处理对316LN不锈钢在高温碱性溶液中应力腐蚀行为的影响*[J]. 金属学报, 2015, 51(6): 659-667.
[7] 颜永得, 杨晓南, 张密林, 李星, 王丽, 薛云, 张志俭. 氯化物熔盐体系共电沉积法制备Al-Li-Gd合金的研究*[J]. 金属学报, 2014, 50(8): 989-994.
[8] 秦飞, 项敏, 武伟. 纳米压痕法确定TSV-Cu的应力-应变关系*[J]. 金属学报, 2014, 50(6): 722-726.
[9] 孙挺, 宋仁伯, 杨富强, 李亚萍, 吴春京. 下贝氏体球墨铸铁在腐蚀介质中的磨粒磨损行为[J]. 金属学报, 2014, 50(11): 1327-1334.
[10] 牛云松,魏杰,赵健,胡家秀,于志明. 超声辅助电镀法纳米叠层Ni镀膜的制备与性能[J]. 金属学报, 2013, 49(12): 1617-1622.
[11] 张昊 吴迪 张黎 段珍珍 赖志明 刘志权. Fe-Ni新型UBM薄膜的晶圆电镀工艺研究[J]. 金属学报, 2012, 48(10): 1273-1280.
[12] 徐亮 唐鋆磊 左禹. 不锈钢表面Cr-Pd合金电沉积及镀层在强还原性介质中的耐蚀性[J]. 金属学报, 2011, 47(2): 209-213.
[13] 宋利晓 张昭 张鉴清 曹楚南. 纳米结构黑镍薄膜的电沉积机理[J]. 金属学报, 2011, 47(1): 123-128.
[14] 张桂凯 李炬 陈长安 窦三平 凌国平. HR--2不锈钢表面渗Al涂层的制备[J]. 金属学报, 2009, 45(8): 983-987.
[15] 乔木; 冼爱平; 尚建库 . 碱性焦磷酸盐镀液电镀Sn--Ag无Pb钎料的研究[J]. 金属学报, 2004, 40(8): 0-826 .