Please wait a minute...
金属学报  2015, Vol. 51 Issue (8): 1001-1009    DOI: 10.11900/0412.1961.2015.00065
  本期目录 | 过刊浏览 |
1673 K下SiO2-CaO-MgO-Al2O3熔渣中 Ni2+的电化学行为*
洪川1,2,高运明1,2(),杨创煌2,童志博2
2 武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室, 武汉 430081
ELECTROCHEMICAL BEHAVIOR OF Ni2+ IN SiO2-CaO-MgO-Al2O3 MOLTEN SLAG AT 1673 K
Chuan HONG1,2,Yunming GAO1,2(),Chuanghuang YANG2,Zhibo TONG2
1 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081
2 Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081
引用本文:

洪川,高运明,杨创煌,童志博. 1673 K下SiO2-CaO-MgO-Al2O3熔渣中 Ni2+的电化学行为*[J]. 金属学报, 2015, 51(8): 1001-1009.
Chuan HONG, Yunming GAO, Chuanghuang YANG, Zhibo TONG. ELECTROCHEMICAL BEHAVIOR OF Ni2+ IN SiO2-CaO-MgO-Al2O3 MOLTEN SLAG AT 1673 K[J]. Acta Metall Sin, 2015, 51(8): 1001-1009.

全文: PDF(2950 KB)   HTML
摘要: 

利用MgO部分稳定的ZrO2固体电解质管集成构建Pt, O2(air)|ZrO2作参比电极的可控氧流电解池, 采用循环伏安、方波伏安、计时电位、恒电位电解等电化学测试技术研究了1673 K高温下SiO2-CaO-MgO-Al2O3熔渣中Ni2+的电化学行为. 结果表明, O2-在熔渣中的扩散和在ZrO2固体电解质内的电迁移不是熔渣中电活性物质还原的限制性环节, 在本实验条件下利用构建的可控氧流电解池研究熔渣中Ni2+的电化学行为是可行的. 熔渣中Ni2+在Ir电极上还原到Ni是受扩散控制的一步还原的可逆过程, 利用循环伏安和计时电位测试技术所得数据计算得出了含有3%NiO的熔渣中Ni2+的扩散系数分别为(3.50±0.18)×10-6和(2.80±0.22)×10-6 cm2/s, 与相关文献结果基本吻合.

关键词 Ni2+熔渣电化学行为阴极过程可控氧流电解池    
Abstract

The modern iron and steel industry produces large emissions of CO2 annually. Electrolytic reduction of molten slag containing iron oxide at high temperature using an inert oxygen evolving anode is an alternative process to reduce or eliminate the formation of CO2. In order to establish reasonable process parameters of electrolytic method for steel containing Ni, it is necessary to master the electrochemical behavior of Ni2+ in molten slag. However, investigations on the electrochemical behavior of Ni2+ in molten slag at higher temperatures were very limited, which can probably be attributed to the experimental difficulties associated with the operation of high-temperature electrochemical cells. An electrolytic cell with a controlled oxygen flow and Pt, O2(air)|ZrO2 used as reference electrode was constructed integrally through a one-end-closed magnesia partially stabilized ZrO2 solid electrolyte tube. Electrochemical behavior of Ni2+ on Ir electrode was investigated in SiO2-CaO-MgO-Al2O3 molten slag at 1673 K by means of electrochemical techniques such as cyclic voltammetry (CV), square wave voltammetry (SWV), chronopotentiometry (CP) and potentiostatic electrolysis. The results show that both diffusion in the molten slag and electromigration in the ZrO2 solid electrolyte for the O2- are not rate-determining steps of electrochemical reduction reaction process of electroactive ions. It is feasible to study electrochemical behavior of Ni2+ in the molten slag with the aid of the electrolytic cell with a controlled oxygen flow under the present experimental conditions. The reduction of Ni2+ on the Ir electrode in the molten slag is found to be a reversible reaction with a single step, and the rate of the process is diffusion controlled. Two diffusion coefficients of Ni2+ in the molten slag containing 3%NiO derived respectively from CV and CP are (3.50±0.18)×10-6 and (2.80±0.22)×10-6 cm2/s, which are consistent with records in the relevant literatures.

Key wordsNi2+    molten slag    electrochemical behavior    cathodic process    electrolytic cell with controlled oxygen flow
    
基金资助:*国家自然科学基金项目51174148和武汉科技大学大学生科技创新基金研究项目14ZRA004资助
图1  电解池结构示意图
图2  含3%NiO熔渣中插入工作电极以及炉内气氛切换时的开路电位-时间曲线
图3  扫描速率0.2 V/s时不同NiO含量的熔渣循环伏安曲线
图4  空白熔渣及含3%NiO的熔渣在不同频率下的方波伏安曲线
图5  含3%NiO的熔渣恒电位电解后Ir电极横断面的SEM像
图6  与图5对应的各点的EDS分析
图7  含3%NiO的熔渣恒电位电解后MSZ管-熔渣界面的SEM像
图8  扫描速率0.5 V/s时不同扫描周次的循环伏安曲线
图9  含3%NiO熔渣在不同扫描速率下的循环伏安曲线
图10  含3%NiO的熔渣在阴/阳极电流±8 mA时的正反计时电位曲线
图11  与图9对应的Ipc-v1/2关系
Slag system (mass fraction) wNiO / % T / K Method D / (cm2·s-1) Ref.
55.6%SiO2-25.9%CaO-18.5%MgO 0.3 1673 CV 1.6×10-6 * [5]
51.8%SiO2-24.2%CaO-13.0%MgO-11%Al2O3 0.163 1723 CV 8.49×10-7 [8]
57.9%SiO2-17.7%Na2O-14.7%B2O3-5.7%Li2O- 1.0 1423 SWV 4.8×10-8 [11]
2.0%MgO-1.0%TiO2-0.5%ZrO2-0.5%La2O3
59.0%SiO2-18.0%Na2O-14.0%B2O3-6.0%Li2O- 0.3~0.6 1393 SWV 6.3×10-7 * [12]
2.0%MgO-0.5%ZrO2-0.5%La2O3
72%SiO2-16Na2O-12%CaO Unspecified 1623 Potential sweep 2.5×10-7 * [13]
39.9%SiO2-21.0%CaO-10.2%MgO-9.8% Unspecified 1673 Unspecified 7.8×10-6 [43]
Al2O3-19.1%FeO
47%SiO2-28%CaO-16%MgO-9%Al2O3 3 1673 CV (3.50 ± 0.18)×10-6 This work
CP (2.80 ± 0.22)×10-6
表1  相似成分熔渣中相近温度下Ni2+的扩散系数
图12  含3%NiO熔渣在不同阴极电流时的计时电位曲线
图13  与图12对应的I-It1/2关系
图14  与图12对应的不同阴极电流的E-ln((t1/2-t1/2)/t1/2)关系
[1] Sun W Q, Cai J J, Mao H J. J Iron Steel Res Int, 2011; 18(6): 31
[2] Xu W Q, Li Y J, Zhu T Y, Cao W J. Chin J Process Eng, 2013; 13(1): 175 (徐文青, 李寅蛟, 朱廷钰, 曹万杰. 过程工程学报, 2013; 13(1): 175)
[3] Wang D H, Gmitter A J, Sadoway D R. J Electrochem Soc, 2011; 158(6): E51
[4] Kim H J, Paramore J, Allanore A, Sadoway D R. J Electrochem Soc, 2011; 158(10): E101
[5] Semkow K W, Rizzo R A, Haskin L A, Lindstrom D J. Geochim Cosmochim Acta, 1982; 46: 1879
[6] Colson R O, Haskin L A, Keedy C R. Geochim Cosmochim Acta, 1991; 55: 2831
[7] Strycker J D, Westbroek P, Temmerman E. J Non-Cryst Solids, 2004; 347: 231
[8] Colson R O, Keedy C R, Haskin L A. Geochim Cosmochim Acta, 1995; 59: 965
[9] Clau?en O, Rüssel C. J Non-Cryst Solids, 1997; 215: 68
[10] Clau?en O, Rüssel C. Solid State Ionics, 1998; 105: 289
[11] Medlin M W, Sienerth K D, Schreiber H D. J Non-Cryst Solids, 1998; 240: 193
[12] Clau?en O, Gerlach S, Rüssel C. J Non-Cryst Solids, 1999; 253: 76
[13] Takahashi K,?Miura Y. J Non-Cryst Solids,1980; 38-39(Part 2): 527
[14] Wang C Z. Solid Electrolyte and Chemical Sensors. Beijing: Metallurgical Industry Press, 2000: 259 (王常珍. 固体电解质和化学传感器. 北京: 冶金工业出版社, 2000: 259)
[15] Fray D J. Metall Mater Trans, 2003; 34B: 589
[16] Van Wijngaarden M J U T, Dippenaar R J, Van den Heever P M. J S Afr Inst Min Metall, 1987; 87: 269
[17] Gao Y M, Song J X, Zhang Y Q, Guo X M. Acta Metall Sin, 2010; 46: 277 (高运明, 宋建新, 张业勤, 郭兴敏. 金属学报, 2010; 46: 277)
[18] Ganesan R, Gnanasekaran T, Srinivasa R S. J Nucl Mater, 2006; 349: 133
[19] Iwase M, Ogura T, Tsujino R. Steel Res, 1994; 65: 90
[20] Turkdogan E T. Ironmaking Steelmaking, 2000; 27: 32
[21] Soral P, Pal U, Larson H R, Schroeder B. Metall Mater Trans, 1999; 30B: 307
[22] Kim W, Min D J, Lee Y S, Park J H. ISIJ Int, 2009; 49: 1882
[23] Lu X G, Zou X L, Li C H, Zhong Q D, Ding W Z, Zhou Z F. Metall Mater Trans, 2012; 43B: 503
[24] Gratz E S, Guan X, Milshtein J D, Pal U B, Powell A C. Metall Mater Trans, 2014; 45B: 1325
[25] Gao Y M, Wang B, Wang S B, Peng S. J Min Metall Sect, 2013; 49B: 49
[26] Mallika C, Sreedharan O M, Subasri R. J Eur Ceram Soc, 2000; 20: 2297
[27] Britten S C, Pal U B. Metall Mater Trans, 2000; 31B: 733
[28] Gao Y M, Jiang Y, Zhang H, Guo X M, Zhou G Z. J Wuhan Univ Sci Techenol, 2007; 30: 449 (高运明, 姜 英, 张 华, 郭兴敏, 周国治. 武汉科技大学学报, 2007; 30: 449)
[29] Wang S B. Master Thesis, Wuhan University of Science and Technology, 2013 (王少博. 武汉科技大学硕士学位论文, 2013)
[30] Jaccoud A, Fóti G, Comninellis C. Electrochim Acta, 2006; 51: 1264
[31] Wang G W, Li H P, Xu L P, Zhang L, Zhang Y Q, Dou J. J Univ Sci Technol Beijing, 2010; 32: 67 (王光伟, 李和平, 徐丽萍, 张 磊, 张艳清, 窦 静. 北京科技大学学报, 2010; 32: 67)
[32] Bale C W, Chartrand P, Degterov S A. Calphad, 2002; 26: 189
[33] Okamoto H. J Phase Equilib Diffus, 2007; 28: 495
[34] Fujishima A,Aisawa M,Inoue T,translated by Chen Z,Yao J N. Experimental Methods of Electrochemistry. Beijing: Peking University Press, 1995: 156 (Fujishima A,Aisawa M,Inoue T著,陈 震,姚建年译. 电化学测定方法. 北京: 北京大学出版社, 1995: 156)
[35] Suk M O, Park J H. J Am Ceram Soc, 2009; 92: 717
[36] Guan C S, Duan S Z, Wang X D. Chin J Nonferrous Met, 1996; 6: 51 (管从胜, 段淑贞, 王新东. 中国有色金属学报, 1996; 6: 51)
[37] Ghallali H E, Groult H, Barhoun A, Draoui K, Krulic D, Lantelme F. Electrochim Acta, 2009; 54: 3152
[38] Guo Q W,Wang G S,Guo G C. Binary Phase Atlas of Common Nonferrous Metals. Beijing: Chemical Industry Press, 2009: 120 (郭青蔚,王桂生,郭庚辰. 常用有色金属二元合金相图集. 北京: 化学工业出版社, 2009: 120)
[39] Massot L, Chamelot P, Taxil P. Electrochim Acta, 2005; 50: 5510
[40] Hamela C, Chamelotb P, Laplace A. Electrochim Acta, 2007; 52: 3995
[41] Wu Y K, Xu Z G, Chen S, Wang L J, Li G X. Rare Met, 2011; 30: 8
[42] Chen J X. Handbook of Diagrams and Data in Common Use for Steelmaking. 2nd Ed., Beijing: Metallurgical Industry Press, 2010: 281 (陈家祥. 炼钢常用图表数据手册. 第2版, 北京: 冶金工业出版社, 2010: 281)
[43] Zhang J Y. Physical Chemistry of Metallurgy. Beijing: Metallurgical Industry Press, 2004: 336 (张家芸. 冶金物理化学. 北京: 冶金工业出版社, 2004: 336)
[44] Hamel C, Chamelot P, Taxil P. Electrochim Acta, 2004; 49: 4467
[45] Bard A J, Faulkner L R. Electrochemical Methods Fundamentals and Applications. 2nd Ed., New York: John Wiley & Sons Inc., 2001: 311
[46] Southampton Electrochemical Group,translated by Liu H T,Xu P D. Instrumental Methods in Electrochemistry. Shanghai: Fudan University Press, 1992: 63 (Southampton Electrochemical Group编,柳厚田,徐品弟译. 电化学中的仪器方法. 上海: 复旦大学出版社, 1992: 63 )
[47] Goto K S. In: Fine H A, Gaskell D R eds., Proc 2nd Int Symp on Metallurgical Slags and Fluxes, Lake Tahoe, Nevada: Metallurgical Society of AIME, 1984: 839
[1] 程伟丽, 谷雄杰, 成世明, 陈宇航, 余晖, 王利飞, 王红霞, 李航. 镁空气电池阳极用挤压态Mg-2Bi-0.5Ca-0.5In合金的放电性能和电化学行为[J]. 金属学报, 2021, 57(5): 623-631.
[2] 苑洪钟,刘智勇,李晓刚,杜翠薇. 外加电位对X90钢及其焊缝在近中性土壤模拟溶液中应力腐蚀行为的影响[J]. 金属学报, 2017, 53(7): 797-807.
[3] 颜永得, 杨晓南, 张密林, 李星, 王丽, 薛云, 张志俭. 氯化物熔盐体系共电沉积法制备Al-Li-Gd合金的研究*[J]. 金属学报, 2014, 50(8): 989-994.
[4] 孙挺, 宋仁伯, 杨富强, 李亚萍, 吴春京. 下贝氏体球墨铸铁在腐蚀介质中的磨粒磨损行为[J]. 金属学报, 2014, 50(11): 1327-1334.
[5] 周合兵 梁曼 吕东生 许梦清 李伟善. 电镀Zn-In合金在碱性溶液中的电化学行为[J]. 金属学报, 2011, 47(8): 1055-1060.
[6] 匡文军 吴欣强 韩恩厚. 闭塞区中Ni2+对核级304不锈钢高温水氧化行为的影响[J]. 金属学报, 2011, 47(7): 927-931.
[7] 高运明; 郭兴敏; 周国治 . 短路还原法提取铁的研究[J]. 金属学报, 2006, 42(1): 87-92 .
[8] 曲彦平; 杜鹤桂 . 高炉型高钛熔渣离子团结构与粘度的关系[J]. 金属学报, 2002, 38(12): 1277-1280 .
[9] 邱克强; 王爱民; 张庆生; 张海峰; 丁炳哲; 胡壮麒 . Nd60Fe30Al10大块非晶的制备及其热稳定性[J]. 金属学报, 2001, 37(8): 829-832 .
[10] 鲁雄刚; 丁伟中; 李福燊; 李丽芬; 周国治 . Wagner极化法对熔渣电子电导的研究[J]. 金属学报, 2001, 37(2): 184-188 .
[11] 鲁道荣; 何建波 . 高浓度Bi3+离子对Cu电解精炼中阴极过程的影响[J]. 金属学报, 2000, 36(9): 966-969 .
[12] 唐恺; 蒋国昌 . 冶金熔渣热力学性质的SReS模型[J]. 金属学报, 2000, 36(5): 502-506 .
[13] 储少军;王颖;吴铿;潜伟. 硼酸盐熔体发泡行为的研究[J]. 金属学报, 1998, 34(8): 875-879.
[14] 张鉴. 二元冶金熔体热力学性质与其相图类型的一致性(或相似性)[J]. 金属学报, 1998, 34(7): 742-752.
[15] 张子青. 液态“渣-金属”化学平衡法求取渣系组元活度的探讨[J]. 金属学报, 1998, 34(3): 299-304.