Please wait a minute...
金属学报  2011, Vol. 47 Issue (4): 397-402    DOI: 10.3724/SP.J.1037.2011.00015
  论文 本期目录 | 过刊浏览 |
高温度梯度定向凝固镍基高温合金DZ125的组织演化
闵志先, 沈军, 熊义龙, 王伟, 杜玉俊, 刘林, 傅恒志
西北工业大学凝固技术国家重点实验室, 西安 710072
MICROSTRUCTURAL EVOLUTION OF DIRECTIONALLY SOLIDIFIED Ni-BASED SUPERALLOY DZ125 UNDER HIGH TEMPERATURE GRADIENT
MIN Zhixian, SHEN Jun, XIONG Yilong, WANG Wei, DU Yujun, LIU Lin, FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
引用本文:

闵志先 沈军 熊义龙 王伟 杜玉俊 刘林 傅恒志. 高温度梯度定向凝固镍基高温合金DZ125的组织演化[J]. 金属学报, 2011, 47(4): 397-402.
, , , , , . MICROSTRUCTURAL EVOLUTION OF DIRECTIONALLY SOLIDIFIED Ni-BASED SUPERALLOY DZ125 UNDER HIGH TEMPERATURE GRADIENT[J]. Acta Metall Sin, 2011, 47(4): 397-402.

全文: PDF(921 KB)  
摘要: 采用液态金属冷却(LMC)定向凝固结合液淬法, 在温度梯度(G)为250 K/cm, 凝固速率(V)为2-400 μm/s的条件下系统研究了镍基高温合金DZ125的固/液界面形态、胞/枝晶间距及MC碳化物形态. 随着V的增大, 界面形态经历了浅胞状→深胞状→粗枝晶→细枝晶的转变. 一次胞晶间距随着V的增大而增大, 当V=5 μm/s时, 固/液界面达到胞-枝转变点, 且一次枝晶间距达到最大值. 当V≧10 μm/s时, 一次枝晶间距和二次枝晶间距随着V的增大而减小. MC碳化物生长形态随着V的增大由胞-枝转变点的八面体依次向骨架状、汉字体状、细小枝晶转变. 分析表明, 一次枝晶间距与Trivedi模型和Ma模型吻合较好, 同时, 低速下(V≦50 μm/s)一次枝晶间距与Hunt-Lu模型吻合得很好, 但高速时发生了明显的偏差. 通过非线性拟合得到一次枝晶间距和二次枝晶间距与V分别满足λ1=314.6V-0.24±0.02和λ2=97.76V-0.33±0.01. MC碳化物在凝固中后期由液相析出, 其形态主要受到固/液界面形态和V的影响.
关键词 镍基高温合金定向凝固微观组织枝晶间距    
Abstract:The Ni-based superalloy DZ125 was prepared by liquid metal cooling (LMC) directional solidification and quenching technology with withdrawal rate ($V$) range of 2-400 μm/s and temperature gradient up to 250 K/cm. The morphologies of solid/liquid (S/L) interface, cellular/dendritic arm spacings and the morphologies of MC carbide were studied systematically. The shallow cellular interface arised at V=2 μm/s. With increasing the withdrawal rate, the S/L interface turns into deep cellular (V=3 μm/s) and dendritic (V≧5 μm/s) interfaces successively. The cellular spacing is increased with increasing the withdrawal rate. However, the primary dendritic arm spacing is decreased with increasing the withdrawal rate. The maximum value of cellular/dendritic spacings appears at transition from cellular to dendritic interfaces (V=5 μm/s). Meanwhile, the morphology of MC carbide changes from octahedron to frame-like, Chinese-script and finally to fine dendrite with increasing the withdrawal rate. Compared with the theoretical models of primary dendrite spacing, the results are good in agreement with Trivedi's and Ma's models. Furthermore, they are also in agreement with Hunt-Lu model only at lower withdrawal rates (V≦50 μm/s). The relationships of primary and secondary dendritic arm spacings with withdrawal rates can be described as λ1=314.6V-0.24±0.02  and λ2=97.76V-0.33±0.01, respectively. MC carbide precipitated from the melt during solidification, and its morphology is dependent both on the withdrawal rate and the morphology of S/L interface.
Key wordsNi-based superalloy    directional solidification    microstructure    dendritic spacing
收稿日期: 2011-01-10     
ZTFLH: 

TG113.12

 
基金资助:

国家自然科学基金项目50827102和凝固技术国家重点实验室自主课题项目28-TP-2009资助

作者简介: 闵志先, 男, 1984年生, 博士生
[1] Fu H Z. Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 162

(傅恒志. 先进材料定向凝固. 北京: 科学出版社, 2008: 162)

[2] Pollock T M, Murphy W H. Metall Mater Trans, 1996; 27A: 1081

[3] Giamei A F, Tschinkel J G. Metall Trans, 1974; 7A: 1427

[4] Elliott A J, Tin S, King W T, Huang S C, Gigliotti M F X, Pollock T M. Metall Mater Trans, 2004; 35A: 3221

[5] Elliott A J, Pollock T M. Metall Mater Trans, 2007; 38A: 871

[6] Kermanpur A, Varahhram N, Davami P, Rappaz M. Metall Mater Trans, 2004; 31B: 1293

[7] Zhao X B, Liu L, Yu Z H, Zhang W G, Zhang J, Fu H Z. J Mater Sci, 2010; 45: 6101

[8] Zhao K, Ma Y H, Lou L H. J Alloy Compd, 2009; 475: 648

[9] Zhou Y Z, Volek A, Green N R. Acta Mater, 2008; 56: 2631

[10] Liu L, Huang T W, Zhang J, Fu H Z. Mater Lett, 2007; 61: 227

[11] Somboonsuk K, Mason J T, Trivedi R. Metall Mater Trans, 1984; 15A: 967

[12] McCartney D G, Hunt J D. Acta Metall, 1981; 29: 1851

[13] Hunt J D. Solidification and Casting of Metals. London: The Metals Society, 1979: 3

[14] Kurz W, Fisher D J. Acta Metall, 1981; 29: 11

[15] Trivedi R. Metall Mater Trans, 1984; 15A: 977

[16] Hunt J D, Lu S Z. Metall Mater Trans, 1996; 27A: 611

[17] Ma D, Sahm P R. Metall Mater Trans, 1998; 29A: 1113

[18] Liu G, Liu L, Zhao X B, Zhang W G, Jin T, Zhang J, Fu H Z. Acta Metall Sin, 2010; 46: 77

(刘 刚, 刘林, 赵新宝, 张卫国, 金涛, 张军, 傅恒志. 金属学报, 2010; 46: 77)

[19] Guo X P, Fu H Z, Sun J H. Metall Mater Trans, 1997; 28A: 997

[20] Min Z X, Shen J, Wang L S, Feng Z R, Liu L, Fu H Z. Acta Metall Sin, 2010; 46: 1075

(闵志先, 沈军, 王灵水, 冯周荣, 刘 林, 傅恒志. 金属学报, 2010; 46: 1075)

[21] Kurz W, Fisher D J. Fundamentals of Solidification. Switzerland: Trans Tech Publications Ltd., 1998: 63

[22] Guo Y G, Li S M, Liu L, Fu H Z. Acta Metall Sin, 2008; 44: 365

(郭勇冠, 李双明, 刘林, 傅恒志. 金属学报, 2008; 44: 365)

[23] Wagner A, Shollock B A, McLean M. Mater Sci Eng, 2004; A374: 270

[24] Al–Jarba K A, Fuchs G E. Mater Sci Eng, 2004; A373: 255

[25] Vijayakumar M, Tewari S N. Mater Sci Eng, 1991; A132: 195

[26] Whitesell H S, Overfelt R A. Mater Sci Eng, 2001; A318: 264

[27] Kattamis T Z, Flemings M C. Trans TMS–AIME, 1965; 233: 992

[28] Min Z X, Shen J, Feng Z R, Wang L S, Liu L, Fu H Z. Acta Metall Sin, 2010; 46: 1543

(闵志先, 沈军, 冯周荣, 王灵水, 刘林, 傅恒志. 金属学报, 2010; 46: 1543)

[29] Liu L, Fu H Z, Shi Z X. Acta Metall Sin, 1989; 25: A282

(刘林, 傅恒志, 史正兴. 金属学报, 1989; 25: A282)

[30] Fernandez R, Lecomte J C, Kattamis T Z. Metall Mater Trans, 1978; 9A: 1381

[31] Sun W R, Lee J H, Seo S M, Choe S J, Hu Z Q. Mater Sci Eng, 1999; A271: 143

[32] Zhou Y Z, Volek A. Mater Sci Eng, 2008; A479: 324

[33] Tin S, Pollock TM, MurphyW. Metall Mater Trans, 2001; 32A: 1743

[34] Tin S, Pollock T M. Metall Mater Trans, 2003; 34A: 1953
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[6] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[7] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[12] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[13] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[14] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[15] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.