Please wait a minute...
金属学报  2011, Vol. 47 Issue (3): 291-297    DOI: 10.3724/SP.J.1037.2010.00590
  论文 本期目录 | 过刊浏览 |
半固态合金强流变轧制单位轧制压力分布的数学模型和理论研究
黄红乾,曹富荣,管仁国,赵占勇,邢振环
东北大学材料与冶金学院, 沈阳 110819
MATHEMATICAL MODEL AND THEORETICAL RESEARCH OF UNIT ROLLING PRESSURE DISTRIBUTION IN RECTANGULAR GROOVE DURING RHEO–ROLLING OF SEMISOLID ALLOY
HUANG Hongqian, CAO Furong, GUAN Renguo, ZHAO Zhanyong, XING Zhenhuan
College of Materials and Metallurgy, Northeastern University, Shenyang 110819
引用本文:

黄红乾 曹富荣 管仁国 赵占勇 邢振环. 半固态合金强流变轧制单位轧制压力分布的数学模型和理论研究[J]. 金属学报, 2011, 47(3): 291-297.
, , , , . MATHEMATICAL MODEL AND THEORETICAL RESEARCH OF UNIT ROLLING PRESSURE DISTRIBUTION IN RECTANGULAR GROOVE DURING RHEO–ROLLING OF SEMISOLID ALLOY[J]. Acta Metall Sin, 2011, 47(3): 291-297.

全文: PDF(1279 KB)  
摘要: 建立了半固态合金强流变轧制过程封闭矩形孔型中单位轧制压力分布的数学模型, 并以AZ91D 镁合金为例, 通过计算研究了轧制带材厚度、带材宽度和轧辊半径对单位轧制压力分布的影响规律. 结果表明, 强流变轧制带材的厚度越小, 宽度越窄, 单位轧制压力峰值越大, 平均单位轧制压力也越大; 随着带材厚度减小, 单位轧制压力峰值向出口移动, 而随着带材宽度减小, 单位轧制压力峰值向入口移动; 随着轧辊半径增大, 单位轧制压力的峰值和平均轧制压力都增大, 峰值逐渐向出口偏移.
关键词 半固态 流变轧制 孔型轧制 单位轧制压力 数学模型 AZ91D    
Abstract:Semisolid metal forming (SSF) is recognized as a new forming technology, which has been paid more and more attention by the researchers all over the world. The semisolid rolling process (rheo–rolling) combines the fabrication of semisolid slurry with continuously rolling as an important neoteric means to achieve near–shape forming. Compared with the traditional rolling process, this technology has the features of short machining process, low energy consumption, low cost equipment and high yield. However, one of the difficulties of using this technology to produce strip is that the solid and liquid phases prone to separation with each other during rheo–rolling deformation, especially when the semisolid slurry has a low solid fraction. The phenomenon causes macrosegregation and reduces the quality of the strip, as a result, limiting its industrial application. Using rectangular groove roller may solve this problem. In this paper, the mathematical model of unit rolling pressure distribution in rectangular groove during rheo–rolling was established. AZ91D magnesium alloy was taken as an example, and the effects of rolling strip thickness, width and roller radius on unit pressure were calculated and studied. he calculation results reveal that the smaller the thickness of rheo–rolled strip is, the narrower the width is, the bigger the peak unit rolling pressure is and the larger the average unit rolling pressure is. However, when the strip thickness decreases, the peak unit rolling pressure moves towards the exit while when width decreases, the peak unit rolling pressure moves towards the entrance. The larger the roller radius is, the bigger the peak unit rolling pressure is, the larger the average unit olling pressure is, and the peak value deviates towards the exit.
Key wordssemisolid    rheo–rolling    groovrolling    unit rolling pressure    athematical model    AZ91D
收稿日期: 2010-11-04     
ZTFLH: 

TG33 TG142

 
基金资助:

国家自然科学基金项目51034002和50974038以及中央高校基本科研业务费项目090502003资助

作者简介: 黄红乾, 男, 1988年生, 硕士生
[1] Luo S J, TianWT, Xie S S, MaoWM. Chin J Nonferrous Met, 2000; 10: 765

(罗守靖, 田文彤, 谢水生, 毛卫民. 中国有色金属学报, 2000; 10: 765)

[2] Song R B, Kang Y , Zhao A M. J Mater Process Technol, 2008; 198: 291

[3] Haga T. J Mater Process Technol, 2002; 130: 558

[4] Haga T, Kenta T, Masaaki I. J Mater Process Technol, 2004; 153: 42

[5] Haga T, Suzuki S. J Mater Process Technol, 2004; 157–158: 695

[6] Guan R G. Theory and Technology of Metallic Semisolid Forming. Beijing: Metallurgical Industrial Press, 2005: 14

(管仁国. 金属半固态成形理论与技术. 北京: 冶金工业出版社, 2005: 14)

[7] Ji Z S, Yan H H, Zheng X P, Sugiyama S O, Yanagimoto J. J Mater Process Technol, 2008; 202: 412

[8] Kang C G, Yoon J H. J Mater Process Technol, 1997; 66: 76

[9] Xie S S, Yang H Q, Huang G J, Li L. J Plast Eng, 2007; 14: 80

(谢水生, 杨浩强, 黄国杰, 李雷. 塑性工程学报, 2007; 14: 80)

[10] Kang C G, Kim Y D. J Mater Process Technol, 1997; 67: 71

[11] Zhu Z H, Xiao W F, LI X Q, Hu S C. Chin J Mech Eng, 2002; 38(7): 153

(朱志华, 肖文峰, 李晓谦, 胡仕成. 机械工程学报, 2002; 38(7): 153)

[12] Zhao D W. Mechanics of Materials Forming. Shenyang: Northeastern University Press, 2002: 115

(赵德文. 材料成形力学. 沈阳: 东北大学出版社, 2002: 115)

[13] Wei L . Principle of Metal Forming. Beijing: Metallurgical Industrial Press, 2008: 55

(魏立群. 金属压力加工原理. 冶金工业出版社, 2008: 55)

[14] Yan H, Xia J C, Wang G C, Hu G A, Li H J. Mater Rev, 2002; 16(11): 8

(闫洪, 夏巨谌, 王高潮, 胡国安, 李海江. 材料导报, 2002; 16(11): 8)

[15] Pan H P, Ding Z Y, Dong Y S, Xie S X. Acta Metall Sin, 2003; 39: 369

(潘洪平,丁志勇, 董原生, 谢水生. 金属学报, 2003; 39: 369)

[16] Xing Z H. Master Dessertation, Northeastern University, Shenyang, 2007

(邢振环. 东北大学硕士论文, 沈阳, 2007)

[17] Seheil E. Z Metallkd, 1942; 34: 70
[1] 姜巨福, 张逸浩, 刘英泽, 王迎, 肖冠菲, 张颖. RAP法制备AlSi7Mg合金半固态坯料研究[J]. 金属学报, 2021, 57(6): 703-716.
[2] 陈光, 郑功, 祁志祥, 张锦鹏, 李沛, 成家林, 张中武. 受控凝固及其应用研究进展[J]. 金属学报, 2018, 54(5): 669-681.
[3] 刘政, 陈志平, 陈涛. 坩埚尺寸和电磁频率对半固态A356铝合金浆料流动的影响[J]. 金属学报, 2018, 54(3): 435-442.
[4] 王永金, 宋仁伯, 宋仁峰. 9Cr18合金半固态触变压缩变形行为及组织演变[J]. 金属学报, 2018, 54(1): 39-46.
[5] 康利梅,杨超,李元元. 半固态烧结法制备高强韧新型双尺度结构钛合金[J]. 金属学报, 2017, 53(4): 440-446.
[6] 刘政,张嘉艺,罗浩林,邓可月. 混沌对流下的半固态A356铝合金初生相形貌演变研究*[J]. 金属学报, 2016, 52(2): 177-183.
[7] 魏恺文,王泽敏,曾晓雁. AZ91D镁合金在激光选区熔化成形中的元素烧损*[J]. 金属学报, 2016, 52(2): 184-190.
[8] 祁明凡, 康永林, 周冰, 朱国明, 张欢欢. 强制对流搅拌流变压铸AZ91D镁合金的组织与性能*[J]. 金属学报, 2015, 51(6): 668-676.
[9] 刘政, 刘小梅, 朱涛, 谌庆春. 低频电磁搅拌对半固态铝合金中稀土分布的影响[J]. 金属学报, 2015, 51(3): 272-280.
[10] 闫学伟,唐宁,刘孝福,税国彦,许庆彦,柳百成. 镍基高温合金铸件液态金属冷却定向凝固建模仿真及工艺规律研究[J]. 金属学报, 2015, 51(10): 1288-1296.
[11] 王佳, 肖寒, 吴龙彪, 卢德宏, 周荣锋, 周荣. 轧制-重熔SIMA法制备ZCuSn10合金半固态坯料[J]. 金属学报, 2014, 50(5): 567-574.
[12] 刘允中,李志龙,顾才鑫. 7050铝合金半固态压缩变形行为及组织演变[J]. 金属学报, 2013, 49(12): 1597-1603.
[13] 王红艳 林鑫 王理林 马良 杨东辉 黄卫东. 半固态SCN-5H2O模型合金流变性与组织特征的耦合分析研究[J]. 金属学报, 2011, 47(9): 1123-1128.
[14] 吕书林 吴树森 戴维 安萍 毛有武. 间接超声振动制备5052铝合金半固态浆料[J]. 金属学报, 2011, 47(5): 634-640.
[15] 赵力宁 林鑫 黄卫东. 较低剪切速率下过冷熔体非枝晶组织的形成与演化[J]. 金属学报, 2011, 47(4): 403-409.