Please wait a minute...
金属学报  2014, Vol. 50 Issue (5): 567-574    DOI: 10.3724/SP.J.1037.2013.00654
  本期目录 | 过刊浏览 |
轧制-重熔SIMA法制备ZCuSn10合金半固态坯料
王佳1,2, 肖寒1(), 吴龙彪1, 卢德宏1, 周荣锋1,3, 周荣1
1 昆明理工大学材料科学与工程学院, 昆明 650093
2 四川理工学院机械工程学院, 自贡 643000
3 昆明理工大学分析测试研究中心, 昆明 650093
STUDY OF ROLLING-REMELTING SIMA PROCESS FOR PREPARING THE SEMI-SOLID BILLET OF ZCuSn10 ALLOY
WANG Jia1,2, XIAO Han1(), WU Longbiao1, LU Dehong1, ZHOU Rongfeng1,3, ZHOU Rong1
1 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
2 College of Mechanical Engineering, Sichuan University of Science and Engineering, Zigong 643000
3 Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093
引用本文:

王佳, 肖寒, 吴龙彪, 卢德宏, 周荣锋, 周荣. 轧制-重熔SIMA法制备ZCuSn10合金半固态坯料[J]. 金属学报, 2014, 50(5): 567-574.
Jia WANG, Han XIAO, Longbiao WU, Dehong LU, Rongfeng ZHOU, Rong ZHOU. STUDY OF ROLLING-REMELTING SIMA PROCESS FOR PREPARING THE SEMI-SOLID BILLET OF ZCuSn10 ALLOY[J]. Acta Metall Sin, 2014, 50(5): 567-574.

全文: PDF(14900 KB)   HTML
摘要: 

采用轧制-重熔的SIMA法制备了ZCuSn10合金半固态坯料, 先将铸态ZCuSn10合金加热到450 ℃保温15 min, 分别进行2~4道次轧制, 然后截取试样进行重熔处理后水淬. 比较了SIMA法和铸态-直接重熔工艺制备的ZCuSn10合金半固态组织, 并利用SEM的EDS测定了组织中Sn的分布情况, 用OM和TEM观察了SIMA法制备过程中试样组织变化, 综合分析了SIMA法制备ZCuSn10合金半固态坯料过程中的组织演变机理. 结果表明: 采用轧制-重熔的SIMA法制备的ZCuSn10合金半固态组织固相晶粒均匀细小, 圆整度高, 19.7%预变形量875 ℃保温15 min半固态组织最优, 其平均晶粒直径75.8 μm, 形状因子1.62, 液相率17.28%; 用SIMA法制备ZCuSn10合金半固态坯料, 预变形过程对晶粒细化及球化起到了关键作用, 随着预变形量和重熔保温温度的提高, 半固态组织晶粒尺寸减小, 圆整度提高, 液相率增加; 采用轧制-重熔的SIMA法制备ZCuSn10合金半固态组织球化的主要机理是预变形过程破碎了枝晶, 储备了变形能, 在重熔过程中促进了枝晶熔断, 同时, 由于Sn元素从液相中向α固相中扩散迁移, 液相逐渐吞噬固相的尖角突出部分, 最终生成细小、圆整的α相晶粒.

关键词 ZCuSn10合金SIMA法变形量重熔温度半固态组织    
Abstract

Semi-solid billet of ZCuSn10 alloy is prepared by strain induced melt activation (SIMA) method which included the rolling and remelting process. Firstly, ZCuSn10 alloy is cast, and samples are cut from ingot casting. Secondly, the samples are rolled with 2~4 passes after holding at 450 ℃ for 15 min, then the new samples are cut from deformed alloy. Lastly, the new samples are reheated up to 850 ℃ or 875 ℃ for 15 min, then water quenching. Semi-solid microstructure is observed and compared with microstructure of ZCuSn10 alloy directly reheated after casting. The distribution of Sn element in microstructure under different conditions is measured by using EDS function of SEM, and the microstructure changes during the SIMA process are observed by means of OM and TEM. Based on the experiments, the microstructure evolution is synthetically analyzed and explained during the course of semi-solid billet of ZCuSn10 alloy prepared by SIMA method. The results indicate that semi-solid microstructure of ZCuSn10 alloy by rolling- remelting SIMA process is equal-fine grain, and spheroidization of solid particle is well. The optimum semi-solid microstructure is obtained when alloy deformed 19.7% is remelted at 875 ℃ for 15 min, the average grain diameter is 75.8 μm, shape factor is 1.62, and volume fraction of liquid phase is 17.28%. Deformation process plays a crucial role in grain refinement and spheroidization during SIMA process for preparing the semi-solid billet of ZCuSn10 alloy, as deformation and remelting temperature increases, the size and shape of solid phase in semi solid microstructure are smaller and more round, volume fraction of liquid phase increases. The main mechanism of SIMA process preparing semi-solid billet of ZCuSn10 alloy is that predeformation breaks dendrites and stores energy of deformation into dendrites, and promotes dendrites melting through remelting process. Meanwhile, liquid phase occupies sharp corners of solid particles by Sn element diffusing from liquid phase into α solid phase, so that fine, uniform and roundness α solid particles are gained.

Key wordsZCuSn10 alloy    SIMA method    deformation    remelting temperature    semi-solid microstructure
收稿日期: 2013-10-16     
ZTFLH:  TG335  
基金资助:* 云南省应用基础研究重点项目2011FA007, 高等学校博士学科点专项科研基金项目20125314120013, 云南省教育厅科学研究基金项目2012Y543及四川理工学院培育项目2013PY05资助
作者简介: null

王 佳, 男, 1980年生, 副教授, 博士生

图1  
Process Sample Processing step
Predeformation Remelting
Casting-remelting A 850 ℃, 15 min, W.Q.
B 875 ℃, 15 min, W.Q.
Rolling-remelting SIMA C 450 ℃, 15 min, 2 passes rolling (10.1%) 850 ℃, 15 min, W.Q.
D 875 ℃, 15 min, W.Q.
E 450 ℃, 15 min, 3 passes rolling (14.8%) 850 ℃, 15 min, W.Q.
F 875 ℃, 15 min, W.Q.
G 450 ℃, 15 min, 4 passes rolling (19.7%) 850 ℃, 15 min, W.Q.
H 875 ℃, 15 min, W.Q.
  
图2  
图3  
图4  
图5  
图6  
图7  
图8  
图9  
[1] Spencer D B, Mehrabia R, Flemings M C. Metall Trans, 1972; 3: 1925
[2] Flemings M C. Metall Trans, 1991; 22A: 957
[3] Chen Q, Luo S J, Zhao Z D. J Alloys Compd, 2009; 447: 726
[4] Kiuchi M, Kopp R. CIRP Ann-Manuf Technol, 2002; 51: 653
[5] Kirkwood D H. Int Mater Rev, 1994; 39: 173
[6] Zhao J W, Wu S S, Wan L, Chen Q H, An P. Acta Metall Sin, 2009; 45: 314
[6] (赵君文, 吴树森, 万 里, 陈启华, 安 萍. 金属学报, 2009; 45: 314)
[7] Luo S J, Chen Q, Zhao Z D. Mater Sci Eng, 2009; A501: 146
[8] Liu Z, Mao W M, Zhao Z D. Acta Metall Sin, 2009; 45: 507
[8] (刘 政, 毛卫民, 赵振铎. 金属学报, 2009; 45: 507)
[9] Young K P, Kyonka C P, Courtois J A. US Pat, 4415374, 1983
[10] Lin H Q, Wang J G, Wang H Y, Jiang Q C. J Alloys Compd, 2007; 431: 141
[11] Dong J, Cui J Z, Le Q C, Lu G M. Mater Sci Eng, 2003; A345: 234
[12] Hassas-Irani S B, Zarei-Hanzaki A, Bazaz B, Roostaei A A. Mater Des, 2013; 46: 579
[13] Alipour M, Aghdam B G, Rahnoma H E, Emamy M. Mater Des, 2013; 46: 766
[14] Jiang J F, Wang Y, Qu J J. Mater Sci Eng, 2013; A560: 473
[15] Dodangeh A, Kazeminezhad M, Aashuri H. Mater Sci Eng, 2012; A558: 371
[16] Tao J Q, Cheng Y S, Huang S D, Peng F F, Yang W X, Lu M Q, Zhang Z M, Jin X. Trans Nonferrous Metall, 2012; 22(suppl 2): 428
[17] Chen Q, Zhao Z D, Zhao Z X, Hu C K, Shu D Y. J Alloys Compd, 2011; 509: 7303
[18] Tian R Z,Wang Z T. Handbook of Copper Alloy and its Processing. Changsha: Central South University Press, 2002: 259
[18] (田荣璋,王祝堂. 铜合金及其加工手册. 长沙: 中南大学出版社, 2002: 259)
[19] Metallographic Experiment Group of Central Laboratory of Luoyang Copper Processing Factory. Metallographic Atlas of Copper and Copper Alloy. Beijing: Metallurgical Industry Press, 1983: 74
[19] (洛阳铜加工厂中心试验室金相组. 铜及铜合金金相图谱. 北京: 冶金工业出版社, 1983: 74)
[1] 李依依 范存淦 戎利建 闫德胜 李秀艳. 抗氢脆奥氏体钢及抗氢铝[J]. 金属学报, 2010, 46(11): 1335-1346.
[2] 薄祥正;方鸿生;王家军;王峥华. 魏氏组织表面浮突的扫描隧道显微镜研究[J]. 金属学报, 1998, 34(4): 345-350.