Please wait a minute...
金属学报  1990, Vol. 26 Issue (4): 54-61    
  论文 本期目录 | 过刊浏览 |
含氢马氏体时效钢低温力学性能行为与断裂机制
刘中豪;陈廉
研究实习员;沈阳(110015);中国科学院金属研究所10室;中国科学院金属研究所
CRYOGENIC MECHANICAL BEHAVIOUR OF MARAGING STEEL CONTAINING HYDROGEN
LIU Zhonghao;CHEN Lian Institute of Metal Research; Academia Sinica; Shenyang research assistant;Institute of Metal Research;Academia Sinica; Shenyang 110015
引用本文:

刘中豪;陈廉. 含氢马氏体时效钢低温力学性能行为与断裂机制[J]. 金属学报, 1990, 26(4): 54-61.
, . CRYOGENIC MECHANICAL BEHAVIOUR OF MARAGING STEEL CONTAINING HYDROGEN[J]. Acta Metall Sin, 1990, 26(4): 54-61.

全文: PDF(1779 KB)  
摘要: 两种状态的钢的强度和塑性均随温度降低而升高,随氢含量的增加而降低。时效样品虽比固溶样品的氢脆敏感性高,但即使在77K下前者仍有良好的抗氢性能。塑性变形后位错缠结成位错胞,其胞尺寸随温度下降而减小,随氢含量的升高而增大。没有发现低温形变孪晶。295和223K下,氢含量为5.90ppm的固溶和时效态试样拉伸断口分别为准解理和沿晶断裂,其它实验条件下的皆为穿晶断裂。并讨论了氢对材料力学性能行为的影响及断裂机制。
关键词 低温抗氢性能断裂机制马氏体时效钢    
Abstract:Within the range of 77 to 295 K, the strength and plasticity of 18Nimaraging steel containing hydrogen increase with the decreasing temperature anddecrease with the increasing hydrogen content. The susceptibility to hydrogen em-brittlement of the maraged specimens is superior to solid solution treated ones evendown to 77K. The dislocations after plastically deformed will be tangled into cellswhich reduce themself in size as decreasing temperature and coarsen as increasinghydrogen concentration. No cryogenic deformation twin was found. The tensile frac-ture surfaces of the solution and maraged specimens containing 5.90 ppm hydrogenunder 295--223 K are revealed as quasi-cleavage and intergranular features respec-tively and as transgranular one at all under other experimental conditions. Theinfluence of hydrogen on the mechanical behaviour of steel and the mechanism ifhydrogen induced deformation and fracture were also discussed.
Key wordsresistance to hydrogen embrittlement    cryogenic property    fracture    maraging steel
收稿日期: 1990-04-18     
基金资助:国家自然科学基金
1 Salmon P H, Birkle A J, Reisdorf B G, Pellissier G E. ASM Trans. 1967; 60: 125
2 河部義邦,金尾正雄,中沢兴三,宗木政一.铁钢,1974;60:269
3 浅山行昭.日本金属学会志,1980;44:963
4 Patterson R L, Wayman C M. Actu Metall, 1966; 14: 347
5 Ellina Lunaska. In: Oriani R A, Hirth J P, Smialowski M eds., Hydrogen Degradation of Ferrous Alloys, The Metallurgical Society of AIME, 1985: 321
6 Oriani R A. Ann Rev Mater Sci, 1978; 8: 327
7 Stroh A N. Philos Mag, 1958; 3: 597
8 Cottrell A H. Trans Am Soc, AIME, 1958; 212: 192
9 冯端,王业宁,丘第荣.金属物理(上),北京:科学出版社,1963:341
[1] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[2] 朱健, 张志豪, 谢建新. 基于原位TEM拉伸的稀土H13钢塑性形变行为和断裂机制[J]. 金属学报, 2020, 56(12): 1592-1604.
[3] 谭超林,周克崧,马文有,曾德长. 激光增材制造成型马氏体时效钢研究进展[J]. 金属学报, 2020, 56(1): 36-52.
[4] 李学达,尚成嘉,韩昌柴,范玉然,孙建波. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响*[J]. 金属学报, 2016, 52(9): 1025-1035.
[5] 王庆娟,周晓,梁博,周滢. 超细晶Cu-Cr-Zr合金的高温拉伸性能及断裂机制*[J]. 金属学报, 2016, 52(11): 1477-1483.
[6] 张旭, 王玉敏, 杨青, 雷家峰, 杨锐. SiCf/TC17复合材料拉伸行为研究[J]. 金属学报, 2015, 51(9): 1025-1037.
[7] 李坤,单际国,王春旭,田志凌. T250马氏体时效钢激光焊接-时效处理接头的强韧性*[J]. 金属学报, 2015, 51(8): 904-912.
[8] 谢君,于金江,孙晓峰,金涛,杨彦红. 温度对高W含量K416B镍基合金拉伸行为的影响*[J]. 金属学报, 2015, 51(8): 943-950.
[9] 接金川, 邹鹑鸣, 王宏伟, 魏尊杰. Al-20Mg合金高压凝固力学性能研究*[J]. 金属学报, 2014, 50(8): 971-978.
[10] 杨沐鑫 杨钢 刘正东 王昌 胡超 黄崇湘. 室温等径转角挤压对18Ni(C-250)马氏体时效钢微观组织和拉伸性能的影响[J]. 金属学报, 2012, 48(2): 164-169.
[11] 黄志伟; 袁福河; 王中光; 朱世杰; 王富岗 . M38镍基高温合金高温低周疲劳性能及断裂机制[J]. 金属学报, 2007, 43(10): 1025-1030 .
[12] 何毅; 刘凯; 杨柯 . 固溶温度对超纯净18Ni(350)马氏体时效钢断裂韧性及微观组织的影响[J]. 金属学报, 2003, 39(4): 381-386 .
[13] 何毅; 杨柯; 孔凡亚; 曲文生; 苏国跃 . 超高强度18Ni无钴马氏体时效钢的力学性能[J]. 金属学报, 2002, 38(3): 278-282 .
[14] 何毅; 杨柯; 曲文生; 孔凡亚; 苏国跃 . 超纯净化18Ni(350)马氏体时效钢的研究[J]. 金属学报, 2001, 37(8): 852-856 .
[15] 黄立业; 徐可为; 吕坚 . 类金刚石碳膜在纳米划擦过程中的弹-塑性变形及断裂机制分析[J]. 金属学报, 2001, 37(7): 733-736 .