|
|
热压温度对TC4合金扩散连接区组织与性能的影响 |
张洺川1,2, 徐勤思2( ), 刘意1, 蔡雨升1( ), 牟义强2, 任德春1, 吉海宾1, 雷家峰1 |
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 2.沈阳航空航天大学 民用航空学院 沈阳 110136 |
|
Effect of Hot-Pressing Temperature on the Microstructure and Properties of the Diffusion-Bonded Region of TC4 Alloy |
ZHANG Mingchuan1,2, XU Qinsi2( ), LIU Yi1, CAI Yusheng1( ), MU Yiqiang2, REN Dechun1, JI Haibin1, LEI Jiafeng1 |
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.College of Civil Aviation, Shenyang Aerospace University, Shenyang 110136, China |
引用本文:
张洺川, 徐勤思, 刘意, 蔡雨升, 牟义强, 任德春, 吉海宾, 雷家峰. 热压温度对TC4合金扩散连接区组织与性能的影响[J]. 金属学报, 2025, 61(8): 1183-1192.
Mingchuan ZHANG,
Qinsi XU,
Yi LIU,
Yusheng CAI,
Yiqiang MU,
Dechun REN,
Haibin JI,
Jiafeng LEI.
Effect of Hot-Pressing Temperature on the Microstructure and Properties of the Diffusion-Bonded Region of TC4 Alloy[J]. Acta Metall Sin, 2025, 61(8): 1183-1192.
[1] |
Yang R, Ma Y J, Lei J F, et al. Toughening high strength titanium alloys through fine tuning phase composition and refining microstructure [J]. Acta Metall. Sin., 2021, 57: 1455
doi: 10.11900/0412.1961.2021.00353
|
[1] |
杨 锐, 马英杰, 雷家峰 等. 高强韧钛合金组成相成分和形态的精细调控 [J]. 金属学报, 2021, 57: 1455
|
[2] |
Huang S S, Ma Y J, Zhang S L, et al. Influence of alloying elements partitioning behaviors on the microstructure and mechanical properties in α + β titanium alloy [J]. Acta Metall. Sin., 2019, 55: 741
|
[2] |
黄森森, 马英杰, 张仕林 等. α + β两相钛合金元素再分配行为及其对显微组织和力学性能的影响 [J]. 金属学报, 2019, 55: 741
doi: 10.11900/0412.1961.2018.00460
|
[3] |
Ren D C, Su H H, Zhang H B, et al. Effect of cold rotary-swaging deformation on microstructure and tensile properties of TB9 titanium alloy [J]. Acta Metall. Sin., 2019, 55: 480
doi: 10.11900/0412.1961.2018.00241
|
[3] |
任德春, 苏虎虎, 张慧博 等. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响 [J]. 金属学报, 2019, 55: 480
doi: 10.11900/0412.1961.2018.00241
|
[4] |
Li X F, Li T L, An D Y, et al. Research progress of titanium alloys and their diffusion bonding fatigue characteristics [J]. Acta Metall. Sin., 2022, 58: 473
doi: 10.11900/0412.1961.2021.00548
|
[4] |
李细锋, 李天乐, 安大勇 等. 钛合金及其扩散焊疲劳特性研究进展 [J]. 金属学报, 2022, 58: 473
doi: 10.11900/0412.1961.2021.00548
|
[5] |
He P, Feng J C, Han J C, et al. Advances in TiAl intermetallics and its joining technology (Part Ⅱ) [J]. Trans. China Weld. Ins., 2002, 23(5): 91
|
[5] |
何 鹏, 冯吉才, 韩杰才 等. TiAl金属间化合物及其连接技术的研究进展 [J]. 焊接学报, 2002, 23(5): 91
|
[6] |
Zhang C C, Zhang T C, Ji Y J, et al. Microstructure evolution and super-diffusion mechanism of weld zone of dissimilar titanium alloys after linear friction welding [J]. Rare Met. Mater. Eng., 2023, 52: 834
|
[6] |
张传臣, 张田仓, 季亚娟 等. 异种钛合金线性摩擦焊组织演变及超扩散机理(英文) [J]. 稀有金属材料与工程, 2023, 52: 834
|
[7] |
Zhang H, Li J L, Ma P Y, et al. Study on microstructure and impact toughness of TC4 titanium alloy diffusion bonding joint [J]. Vacuum, 2018, 152: 272
|
[8] |
Zhao Z C, Xu J H, Fu Y C, et al. An investigation on adaptively machining the leading and tailing edges of an SPF/DB titanium hollow blade using free-form deformation [J]. Chin. J. Aeronaut., 2018, 31: 178
|
[9] |
Ferguson B, Ramulu M. Surface tracking of diffusion bonding void closure and its application to titanium alloys [J]. Int. J. Mater. Form., 2020, 13: 517
doi: 10.1007/s12289-019-01489-0
|
[10] |
Gao Y P, Wang Y, Wang D P, et al. Microstructure and mechanical properties of diffusion bonded TC11 alloy joint [J]. Rare Met. Mater. Eng., 2023, 52: 770
|
[10] |
高云鹏, 王 颖, 王东坡 等. TC11钛合金扩散连接接头组织及力学性能研究 [J]. 稀有金属材料与工程, 2023, 52: 770
|
[11] |
Ma R F, Li M Q, Li H, et al. Modeling of void closure in diffusion bonding process based on dynamic conditions [J]. Sci. China Technol. Sci., 2012, 55: 2420
|
[12] |
Zou J T, Gao L, Xie T F, et al. Interfacial microstructure and shear strength of Cu/Al bimetal fabricated by diffusion welding [J]. Rare Met. Mater. Eng., 2020, 49: 4121
|
[12] |
邹军涛, 高 磊, 谢庭芳 等. 扩散连接制备Cu/Al双金属及其界面组织与剪切强度(英文) [J]. 稀有金属材料与工程, 2020, 49: 4121
|
[13] |
Sharma G, Dwivedi D K. Diffusion bonding of pre-friction treated structural steel with reversion of deformation induced grains [J]. Mater. Sci. Eng., 2017, A696: 393
|
[14] |
He S L, Zhao Y S, Lu F, et al. Effects of hot isostatic pressure on microdefects and stress rupture life of second-generation nickel-based single crystal superalloy in as-cast and as-solid-solution states [J]. Acta Metall. Sin., 2020, 56: 1195
doi: 10.11900/0412.1961.2020.00020
|
[14] |
和思亮, 赵云松, 鲁 凡 等. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响 [J]. 金属学报, 2020, 56: 1195
doi: 10.11900/0412.1961.2020.00020
|
[15] |
Cheng M, Lu Z G, Wu J, et al. Effect of thermal induced porosity on high-cycle fatigue and very high-cycle fatigue behaviors of hot-isostatic-pressed Ti-6Al-4V powder components [J]. J. Mater. Sci. Technol., 2022, 98: 177
doi: 10.1016/j.jmst.2021.04.066
|
[16] |
Cai C, Song B, Xue P J, et al. Effect of hot isostatic pressing procedure on performance of Ti6Al4V: Surface qualities, microstructure and mechanical properties [J]. J. Alloys Compd., 2016, 686: 55
|
[17] |
Chen S D, Ke F J, Zhou M, et al. Atomistic investigation of the effects of temperature and surface roughness on diffusion bonding between Cu and Al [J]. Acta Mater., 2007, 55: 3169
|
[18] |
Gao W J, Xing S M, Lei J X. Effect of bonding temperature and holding time on properties of hollow structure diffusion bonded joints of TC4 alloy [J]. SN Appl. Sci., 2020, 2: 1960
|
[19] |
Shi C C, Lu Z, Zhang K F, et al. Microstructure evolution and mechanical properties of γ-TiAl honeycomb structure fabricated by isothermal forging and pulse current assisted diffusion bonding [J]. Intermetallics, 2018, 99: 59
|
[20] |
Liu T, Leazer J D, Brewer L N. Particle deformation and microstructure evolution during cold spray of individual Al-Cu alloy powder particles [J]. Acta Mater., 2019, 168: 13
|
[21] |
Xiong J T, Peng Y, Samiuddin M, et al. Common mechanical properties of diffusion bonded joints and their corresponding microstructure features [J]. J. Mater. Eng. Perform., 2020, 29: 3277
|
[22] |
Wei J K, Feng B, Ishikawa R, et al. Direct imaging of atomistic grain boundary migration [J]. Nat. Mater., 2021, 20: 951
doi: 10.1038/s41563-020-00879-z
pmid: 33432148
|
[23] |
Shen Z, Arioka K, Lozano-Perez S. A study on the diffusion-induced grain boundary migration ahead of stress corrosion cracking crack tips through advanced characterization [J]. Corros. Sci., 2021, 183: 109328
|
[24] |
Beke D L, Kaganovskii Y, Katona G L. Interdiffusion along grain boundaries—Diffusion induced grain boundary migration, low temperature homogenization and reactions in nanostructured thin films [J]. Prog. Mater. Sci., 2018, 98: 625
|
[25] |
Liu X, Xu L, Zhang S. Molecular dynamics simulation of Ti-6Al-4V diffusion bonding behavior under different process parameters [J]. Mater. Tehnol., 2020, 54: 365
|
[26] |
Liu X G, Zhang S, Li B Y, et al. Molecular dynamics simulation of TC4 aging phase transition and diffusion bonding [J]. Rare Met. Mater. Eng., 2018, 47: 3045
|
[26] |
刘小刚, 张 顺, 李百洋 等. TC4时效相变及扩散连接的分子动力学模拟 [J]. 稀有金属材料与工程, 2018, 47: 3045
|
[27] |
Zhao Y, Xie B J, Zhang J L, et al. Effects of surface roughness on interface bonding performance for 316H stainless steel in hot-compression bonding [J]. Acta Metall. Sin. (Engl. Lett.), 2023, 36: 771
|
[28] |
Zheng R X, Du J P, Gao S, et al. Transition of dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer [J]. Acta Mater., 2020, 198: 35
|
[29] |
Kondo S, Mitsuma T, Shibata N, et al. Direct observation of individual dislocation interaction processes with grain boundaries [J]. Sci. Adv., 2016, 2: e1501926
|
[30] |
Zhang J Y, Xu B, ul Haq Tariq N, et al. Effect of strain rate on plastic deformation bonding behavior of Ni-based superalloys [J]. J. Mater. Sci. Technol., 2020, 40: 54
doi: 10.1016/j.jmst.2019.08.044
|
[31] |
Zhu Q, Cao G, Wang J W, et al. In situ atomistic observation of disconnection-mediated grain boundary migration [J]. Nat. Mater., 2019, 10: 156
|
[32] |
Liu H X, Wang Y J, Liu F, et al. Effect of solution aging treatment on microstructure and properties of 7A52 aluminum alloy CMT + P welded joint [J]. Rare Met. Mater. Eng., 2023, 52: 1905
|
[32] |
刘洪旭, 王艳杰, 刘 峰 等. 固溶时效处理对7A52铝合金CMT + P焊接接头组织及性能的影响 [J]. 稀有金属材料与工程, 2023, 52: 1905
|
[33] |
Ding C, Wang C L, Li F, et al. Effects of solid solution, cooling rates and aging treatments on microstructure and mechanical properties of TC4-DT alloy [J]. Rare Met. Mater. Eng., 2020, 49: 962
|
[33] |
丁 灿, 汪常亮, 李 峰 等. 固溶-冷速-时效对TC4-DT合金显微组织和力学性能的影响 [J]. 稀有金属材料与工程, 2020, 49: 962
|
[34] |
Zhao Z, Chen J, Guo S, et al. Influence of α/β interface phase on the tensile properties of laser cladding deposited Ti-6Al-4V titanium alloy [J]. J. Mater. Sci. Technol., 2017, 33: 675
|
[35] |
Zhang H, Li J L, Ma P Y, et al. Effect of grain boundary migration on impact toughness of 316L diffusion bonding joints [J]. Mater. Res. Express, 2019, 6: 076535
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|