Please wait a minute...
金属学报  2025, Vol. 61 Issue (12): 1781-1789    DOI: 10.11900/0412.1961.2024.00131
  研究论文 本期目录 | 过刊浏览 |
(AlCrTaTiZr)N x 阻氚涂层制备及其表面氢同位素吸附
张建东, 席晓翀, 凌永生, 曾繁荣, 单卿, 贾文宝()
南京航空航天大学 材料科学与技术学院 南京 211106
Preparation of (AlZrTaTiZr)N x Tritium Barrier Coating and Adsorption of Hydrogen Isotope on the Surface
ZHANG Jiandong, XI Xiaochong, LING Yongsheng, ZENG Fanrong, SHAN Qing, JIA Wenbao()
School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
引用本文:

张建东, 席晓翀, 凌永生, 曾繁荣, 单卿, 贾文宝. (AlCrTaTiZr)N x 阻氚涂层制备及其表面氢同位素吸附[J]. 金属学报, 2025, 61(12): 1781-1789.
Jiandong ZHANG, Xiaochong XI, Yongsheng LING, Fanrong ZENG, Qing SHAN, Wenbao JIA. Preparation of (AlZrTaTiZr)N x Tritium Barrier Coating and Adsorption of Hydrogen Isotope on the Surface[J]. Acta Metall Sin, 2025, 61(12): 1781-1789.

全文: PDF(1934 KB)   HTML
摘要: 

在聚变堆中的氚增殖部位,阻氚涂层可以有效阻止氚向包层结构材料扩散,避免材料退化与氚资源的损失。然而,现有涂层(如α-Al2O3、Er2O3等)在辐照等极端环境下的性能受到挑战,高熵涂层被认为是有效的解决途径。本工作采用磁控溅射方法在不同N2流量条件下制备了(AlCrTaTiZr)N x 涂层,并借助XRD、SEM和EDS等手段研究了涂层的晶体结构、微观形貌以及元素含量。结果表明,当未通入N2时,溅射涂层为非晶态金属薄膜;通入N2后形成fcc结构的氮化物薄膜。当N2的流量比RN = 15%时,涂层结晶效果最好,与Si基体紧密结合且致密性良好。在实验基础上构建并研究了涂层在服役条件下的氢同位素-表面相互作用问题。首先,采用第一性原理并结合特殊准随机结构(SQS)构建了H2分子在(AlCrTaTiZr)N (001)面的吸附模型;随后,计算了不同位点和吸附方式的吸附能,并分析了不同H2覆盖度下稳定吸附对涂层力学性能的影响。结果表明,H2在涂层表面的吸附属于物理吸附。垂直吸附的Hollow位是最稳定的吸附位,且CrTaTiZr构成的Hollow位最为稳定。吸附后(AlCrTaTiZr)N涂层的体积模量(B)、剪切模量(G)、Young's模量(E)、Poisson比(ν)和B / G均略有下降,表明H2的吸附导致涂层的强度、硬度以及延展性下降。

关键词 磁控溅射阻氚涂层第一性原理氚吸附力学稳定性    
Abstract

In the tritium proliferation site of the fusion reactor, the tritium barrier coating can effectively prevent the diffusion of tritium into the cladding structure and avoid the degradation of the material and the loss of tritium resources. However, the performance of existing coatings (such as α-Al2O3 and Er2O3) in extreme environments such as irradiation is challenged, and high-entropy alloy coatings are considered to be an effective solution. In meeting the aforementioned requirements, (AlCrTaTiZr)N x coatings were prepared on a Si substrate by magnetron sputtering under different N2 flows. The crystal structure, microstructure, and elemental content of the coatings were studied by XRD, SEM, and EDS. When no N2 was introduced, the film was amorphous. By contrast, when N2 was introduced, the film developed a fcc structure, which was closely combined with the Si substrate, and the coating had good compactness. When the volume flow ratio of N2 / (Ar + N2) (RN) is 15%, the crystallinity of the film was strongest. On the basis of the first principles method combined with the special quasi-random structure, an adsorption model of H2 molecules on the (001) surface of (AlCrTaTiZr)N was constructed. The hydrogen isotope surface interaction of coatings under service conditions was constructed and studied on the basis of the experiments. First, the adsorption energy of different sites and adsorption modes, as well as the effect of stable adsorption on the mechanical properties of the coating under different H2 coverages was calculated. Results indicate that the vertical adsorption Hollow sites are stable adsorption sites, and H2 adsorption on the coating surface is dependent on physical adsorption. H2 is adsorbed on the Hollow sites composed of CrTaTiZr. After adsorption, the volume modulus (B), shear modulus (G), Young's modulus (E), Poisson's ratio (ν) and B / G of the coating decreased. From a macroscopic perspective, H2 adsorption decreases the strength, hardness, and ductility of the coating.

Key wordsmagnetron sputtering    tritium barrier coating    first-principles    tritium adsorption    mechanical stability
收稿日期: 2024-05-07     
ZTFLH:  TL62-7  
基金资助:国家自然科学基金项目(12305305);中国博士后面上基金项目(2023M731657);南京航空航天大学研究生科研与实践创新计划项目(xcxjh202306204)
通讯作者: 贾文宝,jiawenbao@163.com,主要从事中子物理及核分析技术研究
Corresponding author: JIA Wenbao, professor, Tel: 13776682864, E-mail: jiawenbao@163.com
作者简介: 张建东,男,1988年生,博士
图1  结构优化后(AlCrTaTiZr)N的超胞模型
图2  不同层数(AlCrTaTiZr)N的(100)、(010)、(001)和(111)面的表面能
图3  H2在(AlCrTaTiZr)N表面的平行吸附和垂直吸附示意图
图4  H2在(AlCrTaTiZr)N表面的吸附位点示意图
图5  不同N2体积流量比(RN)下氮化物薄膜的XRD谱
图6  不同N2流量(RN = 0~20%)下氮化物薄膜表面以及截面形貌SEM像
RN / %AlCrTaTiZrN
016.0020.3217.6424.8820.360
57.8611.469.2711.3813.5146.52
105.2510.599.138.1410.6156.28
154.4510.019.006.7010.8658.98
203.459.308.786.169.6662.65
表1  不同N2流量下氮化物薄膜的各元素含量EDS结果 (atomic fraction / %)
Adsorption siteParallel adsorptionVertical adsorption
Top site-0.146-0.252
Bridge site0.244-0.064
Hollow site-0.298-0.452
表2  H2在(AlCrTaTiZr)N (001)面的吸附能 (eV)
图7  H2在(AlCrTaTiZr)N (001)面吸附前后的H2键长及其变化率
图8  H2在(AlCrTaTiZr)N (001)面不同Hollow位的垂直吸附的位点示意图和吸附能
H2 coverage / MLC11C12C44
0369.45176.25173.32
0.05369.02175.77172.94
0.10368.84175.59172.67
0.15368.55175.33172.52
0.20368.46175.14172.48
表3  不同H2覆盖度下稳定吸附后涂层的弹性常数 (GPa)
图9  不同H2覆盖度下稳定吸附后涂层的体积模量(B)、Young's模量(E)、剪切模量(G)、Poisson比(ν)和B / G
[1] Pan C H. The International Thermonuclear Experimental Reactor and the future of nuclear fusion energy [J]. Phy. Bull., 2010, 39: 375
[1] 潘传红. 国际热核实验反应堆(ITER)计划与未来核聚变能源 [J]. 物理通报, 2010, 39: 375
[2] Ding X Y, Li H, Luo L M, et al. Progress in research of international thermonuclear experimental reator first wall materials [J]. Mater. Mech. Eng., 2013, 37(11): 6
[2] 丁孝禹, 李 浩, 罗来马 等. 国际热核试验堆第一壁材料的研究进展 [J]. 机械工程材料, 2013, 37(11): 6
[3] Liu G D, Zhang L, Zheng L, et al. Preparation and prospect of tritium resistant coating on the surface of structural materials for fusion reactor [J]. Metall. Funct. Mater., 2020, 27(3): 1
[3] 刘东光, 张 力, 郑 亮 等. 聚变堆结构材料表面阻氚涂层的制备与展望 [J]. 金属功能材料, 2020, 27(3): 1
[4] Zhao W W, Yuan X M, Zhan Q, et al. Status of R&D tritium permeation barrier coatings for tritium breeding blanket of fusion reactor [A]. Progress Report on China's Nuclear Science and Technology (Volume 2)—Proceedings of the 2011 Annual Academic Conference of the Chinese Nuclear Society, Volume 4 (Nuclear Materials Subvolume, Isotope Separation Subvolume, Nuclear Chemistry and Radiochemistry Subvolume) [C]. Beijing: China Atomic Energy Press, 2011: 12
[4] 赵崴巍, 袁晓明, 占 勤 等. 氚增殖包层结构材料阻氚涂层技术研究现状 [A]. 中国核科学技术进展报告(第二卷)——中国核学会2011年学术年会论文集第4册(核材料分卷、同位素分离分卷、核化学与放射化学分卷) [M]. 北京: 中国原子能出版社, 2011: 12
[5] Xu J, Li R B. Research progress of structural materials for nuclear fusion reactors [J]. Nonferrous Mater. Eng., 2020, 41(6): 41
[5] 徐 杰, 李荣斌. 核聚变堆用结构材料的研究进展 [J]. 有色金属材料与工程, 2020, 41(6): 41
[6] Huang H T, Liu Y, Wang W. Complete review and prospects of hydrogen/deuterium/tritium permeation barrier coatings for nuclear reactor components [J]. Mater. Rep., 2023, 37(7): 39
[6] 黄洪涛, 刘 阳, 王 旺. 反应堆结构部件表面阻氢/氘/氚涂层的研究现状及展望 [J]. 材料导报, 2023, 37(7): 39
[7] Muroga T, Pint B A. Progress in the development of insulator coating for liquid lithium blankets [J]. Fusion Eng. Des., 2010, 85: 1301
[8] Zhang G K. Theoretical studies on hydrogen behavior in α-Al2O3 tritium permeation barrier material [D]. Hefei: University of Science and Technology of China, 2014
[8] 张桂凯. α-Al2O3阻氚涂层材料中氢行为的理论研究 [D]. 合肥: 中国科学技术大学, 2014
[9] Wang X J, Qiao J W, Wu Y C. High entropy alloys: The new irradiation-resistant candidate materials towards the fusion reactors [J]. Mater. Rep., 2020, 34: 17058
[9] 王雪姣, 乔珺威, 吴玉程. 高熵合金: 面向聚变堆抗辐照损伤的新型候选材料 [J]. 材料导报, 2020, 34: 17058
[10] Hu L L, Zhong F, Zhang J, et al. High hydrogen isotopes permeation resistance in (TiVAlCrZr)O multi-component metal oxide glass coating [J]. Acta Mater., 2022, 238: 118204
[11] Zhang J C, Sun S, Yang Z M, et al. Extended damage range of (Al0.3Cr0.2Fe0.2Ni0.3)3O4 high entropy oxide films induced by surface irradiation [J]. Chin. Phys., 2020, 29B: 066104
[12] Lai C H, Lin S J, Yeh J W, et al. Preparation and characterization of AlCrTaTiZr multi-element nitride coatings [J]. Surf. Coat. Technol., 2006, 201: 3275
[13] Lai C H, Tsai M H, Lin S J, et al. Influence of substrate temperature on structure and mechanical, properties of multi-element (AlCrTaTiZr)N coatings [J]. Surf. Coat. Technol., 2007, 201: 6993
[14] Kumar P, Avasthi S. Diffusion barrier with 30-fold improved performance using AlCrTaTiZrN high-entropy alloy [J]. J. Alloys Compd., 2020, 814: 151755
[15] Xu T, Chen J W, Xia D M, et al. Prediction model on hydrolysis kinetics of phthalate monoester: A density functional theory study [J]. J. Environ. Sci., 2024, 135: 51
[16] Niţescu O. Accurate approximants of inverse Brillouin functions [J]. J. Mag. Mag. Mater., 2022, 547: 168895
[17] Kuczyk M, Krülle T, Zawischa M, et al. Microstructure and mechanical properties of high entropy alloy nitride coatings deposited via direct current cathodic vacuum arc deposition [J]. Surf. Coat. Technol., 2022, 448: 128916
[18] Dai Y J. First-principles calculation on the interfaces of magnesium-based silicon carbide composites [D]. Shenyang: Shenyang University of Technology, 2023
[18] 戴怡建. 镁基碳化硅复合材料界面的第一性原理计算 [D]. 沈阳: 沈阳工业大学, 2023
[19] Zhang C, Liu J, Xie S Y, et al. Research progress in high-entropy alloys driven by high throughput computation and machine learning [J]. J. Mater. Eng., 2023, 51(3): 1
[19] 张 聪, 刘 杰, 解树一 等. 高通量计算与机器学习驱动高熵合金的研究进展 [J]. 材料工程, 2023, 51(3): 1
[20] Zhao W, Wang J D, Liu F B, et al. First principles study of H2O molecule adsorption on Fe(100), Fe(110), and Fe(111) surfaces [J]. Acta Phys. Sin., 2009, 58: 3352
[20] 赵 巍, 汪家道, 刘峰斌 等. H2O分子在Fe(100), Fe(110), Fe(111)表面吸附的第一性原理研究 [J]. 物理学报, 2009, 58: 3352
[21] Itin Y, Hehl F W. The constitutive tensor of linear elasticity: Its decompositions, Cauchy relations, null Lagrangians, and wave propagation [J]. J. Math. Phys., 2013, 54: 042903
[22] Lin Z, Liu M. The elastic constants of polycrystalline materials with cubic system structural single crystals [J]. Acta Phys. Sin., 2009, 58: 4096
[22] 林 政, 刘 旻. 具有立方晶系结构的多晶体材料的弹性常数——γ弹性常数 [J]. 物理学报, 2009, 58: 4096
[23] Elphick K, Frost W, Samiepour M, et al. Heusler alloys for spintronic devices: Review on recent development and future perspectives [J]. Sci. Technol. Adv. Mater., 2021, 22: 235
[24] Wang P F, Deng D F, Chen G, et al. Stability of Fe(111)/Al2O3(0001)interface based on first principles [J]. Nonferrous Met. Sci. Eng., 2024, 15: 158
[24] 王浦璠, 邓道繁, 陈 果 等. 基于第一性原理的Fe(111)/Al2O3(0001)界面稳定性研究 [J]. 有色金属科学与工程, 2024, 15: 158
[25] Li Y, Yang Z, Duan H B, et al. The effects of V element on the microstructure and properties of high-entropy alloy Al0.4Co0.5V x FeNi were calculated based on first principles [J]. Rare Met. Mater. Eng., 2024, 53: 95
[25] 李 远, 杨 忠, 段洪波 等. 基于第一性原理计算V元素对高熵合金Al0.4Co0.5V x FeNi的组织及性能影响 [J]. 稀有金属材料与工程, 2024, 53: 95
[26] Lai C H, Lin S J, Yeh J W, et al. Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr)N coatings [J]. J. Phys., 2006, 39D: 4628
[27] Gao X, Zhai T T, Sun H F, et al. Effect of Cr content on activation and hydrogen storage properties of TiFe alloy [J]. J. Inner Mongolia Univ. Sci. Technol., 2023, 42: 394
[27] 高 鑫, 翟亭亭, 孙涵丰 等. Cr替代量对TiFe合金活化性能与储氢性能的影响 [J]. 内蒙古科技大学学报, 2023, 42: 394
[28] Reilly J J, Wiswall R H. Formation and properties of iron titanium hydride [J]. Inorg. Chem., 1974, 13: 218
[29] Jiang H Q, Zhong J B. First principles study on mechanical properties of different crystal forms of zirconia [J]. J. Inner Mongolia Univ. Sci. Technol., 2022, 41: 307
[29] 姜合群, 钟金豹. 不同晶型氧化锆力学性质的第一性原理研究 [J]. 内蒙古科技大学学报, 2022, 41: 307
[1] 孟祥龙, 刘瑞良, Li D. Y.. 钽合金表面渗碳层中碳化物析出及其性能的第一性原理研究[J]. 金属学报, 2025, 61(5): 797-808.
[2] 梁炫, 侯廷平, 张东, 谭昕暘, 吴开明. 中碳Nb合金化钢液析碳化物的析出行为[J]. 金属学报, 2025, 61(4): 653-664.
[3] 罗列文, 王明洋, 高志明, 夏大海, 邓意达, 胡文彬. 高强铝合金晶界氢陷阱的原子尺度作用机制[J]. 金属学报, 2025, 61(11): 1747-1757.
[4] 王京京, 姚志浩, 张鹏, 赵杰, 张迈, 王蕾, 董建新, 陈迎. 镍基高温合金中S元素对基体与热障涂层界面稳定性的影响[J]. 金属学报, 2024, 60(9): 1250-1264.
[5] 李聪, 王猛, 屠汉俊, 施立群. Y掺杂Ti膜的吸放氢行为[J]. 金属学报, 2024, 60(6): 826-836.
[6] 周彦余, 李江旭, 刘晨, 赖俊文, 高强, 马会, 孙岩, 陈星秋. 金属间化合物Pt7Sb投影Berry相位与析氢催化关联的第一性原理计算[J]. 金属学报, 2024, 60(6): 837-847.
[7] 王郑, 王振玉, 汪爱英, 杨巍, 柯培玲. 微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响[J]. 金属学报, 2024, 60(5): 691-698.
[8] 程坤, 陈树明, 曹烁, 刘建荣, 马英杰, 范群波, 程兴旺, 杨锐, 胡青苗. 第一性原理研究钛合金中的沉淀强化[J]. 金属学报, 2024, 60(4): 537-547.
[9] 张宇, 吴盼, 贾东昇, 黄林科, 贾晓晴, 刘峰. 基于稳定性的第三代先进高强钢设计[J]. 金属学报, 2024, 60(2): 143-153.
[10] 杨谨菡, 闫海乐, 刘昊轩, 赵莹, 杨一俏, 赵骧, 左良. A2BTi型磁性功能合金相稳定性、磁性与力学性能的第一性原理计算和实验研究[J]. 金属学报, 2024, 60(12): 1701-1709.
[11] 沈雪阳, 褚瑞轩, 蒋宜辉, 张伟. 相变存储器材料设计与多尺度模拟的研究进展[J]. 金属学报, 2024, 60(10): 1362-1378.
[12] 赵晋彬, 王建韬, 何东昌, 李俊林, 孙岩, 陈星秋, 刘培涛. 氢化物超导体临界转变温度的机器学习模型[J]. 金属学报, 2024, 60(10): 1418-1428.
[13] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[14] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[15] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.