Please wait a minute...
金属学报  2025, Vol. 61 Issue (12): 1769-1780    DOI: 10.11900/0412.1961.2024.00099
  研究论文 本期目录 | 过刊浏览 |
Ti表面Ag/g-C3N4 共敏化TiO2 纳米膜的构筑及其光电化学行为
官自超1,2, 胡娟1,3, 时海燕1, 董士刚4(), 刘亚安5, 王霞1, 金飘1, 杜荣归1()
1 厦门大学 化学化工学院 表界面化学全国重点实验室 厦门 361005
2 中海油常州涂料化工研究院有限公司 常州 213016
3 国家增材制造产品质量检验检测中心 无锡 214101
4 厦门大学 能源学院 厦门 361102
5 常州大学 材料科学与工程学院 常州 213164
Fabrication and Photoelectrochemical Properties of Ag/g-C3N4 Co-Sensitized TiO2 Nanotube Composite Film on Ti Substrate
GUAN Zichao1,2, HU Juan1,3, SHI Haiyan1, DONG Shigang4(), Liu Ya'an5, WANG Xia1, JIN Piao1, DU Ronggui1()
1 State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
2 CNOOC Changzhou Paint and Coatings Industry Research Institute Co. Ltd. , Changzhou 213016, China
3 National Center of Inspection on Additive Manufacturing Product Quality, Wuxi 214101, China
4 College of Energy, Xiamen University, Xiamen 361102, China
5 School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
引用本文:

官自超, 胡娟, 时海燕, 董士刚, 刘亚安, 王霞, 金飘, 杜荣归. Ti表面Ag/g-C3N4 共敏化TiO2 纳米膜的构筑及其光电化学行为[J]. 金属学报, 2025, 61(12): 1769-1780.
Zichao GUAN, Juan HU, Haiyan SHI, Shigang DONG, Ya'an Liu, Xia WANG, Piao JIN, Ronggui DU. Fabrication and Photoelectrochemical Properties of Ag/g-C3N4 Co-Sensitized TiO2 Nanotube Composite Film on Ti Substrate[J]. Acta Metall Sin, 2025, 61(12): 1769-1780.

全文: PDF(2378 KB)   HTML
摘要: 

为提高Ti基体表面TiO2半导体膜的光电化学性能,对不锈钢实施光电化学阴极保护,本工作预先用阳极氧化法在Ti表面构筑TiO2纳米管阵列膜,再依次通过化学气相沉积和化学浴沉积法在阵列膜表面负载类石墨相氮化碳(g-C3N4)和Ag,获得了高性能的Ag/g-C3N4共敏化TiO2纳米管复合膜光阳极。相比于TiO2纳米管膜,经Ag/g-C3N4共敏化后,Ag/g-C3N4/TiO2复合膜的光吸收范围扩展到可见光区,光学性能显著增强。白光照射下,复合膜在含0.2 mol/L NaOH的含50% (体积分数)乙二醇水溶液中的光电流密度达到纯TiO2纳米膜的11倍,表现出优良的光电化学性能。Ti表面Ag/g-C3N4/TiO2纳米管复合膜作为光阳极,可使403不锈钢在0.5 mol/L NaCl溶液中的电极电位相对于自腐蚀电位降低530 mV,光电化学阴极保护效应显著增强,对控制不锈钢腐蚀发挥了良好作用。

关键词 Ti阳极氧化化学气相沉积化学浴沉积TiO2纳米管g-C3N4Ag光电化学阴极保护    
Abstract

Photoelectrochemical cathodic protection for metals, leveraging the unique photoelectrochemical properties of TiO2 semiconductor films, represents an innovative approach to corrosion protection with promising potential. However, pure TiO2 films exhibit limitations, including low visible light absorption, rapid recombination of photogenerated electrons and holes, and low photoelectric conversion efficiency. To enhance the photoelectrochemical properties of TiO2 film photoanodes, composite films are essential. In this study, a g-C3N4 layer and Ag nanoparticles were sequentially deposited onto an anodized TiO2 nanotube array film on a Ti foil via simplified chemical vapor deposition and chemical bath deposition, respectively, to enhance the TiO2 composite film's photoelectrochemical performance for metal cathodic protection applications. The results demonstrated substantial improvements in light absorption and photoelectrochemical performance for the Ag/g-C3N4 co-sensitized TiO2 nanotube composite film compared to the pure TiO2 nanotube array film. The Ag/g-C3N4/TiO2 composite film's light absorption was extended into the visible light spectrum, enhancing the separation efficiency of photogenerated electrons and holes. Under white light irradiation, the photocurrent density of the composite film in an aqueous solution containing 50% (volume fraction) ethylene glycol and 0.2 mol/L NaOH reached 135 μA/cm2, approximately 11 times that of the pure TiO2 film. Furthermore, when employed as a photoanode, the composite film on the Ti surface reduced the electrode potential of 403 stainless steel in a 0.5 mol/L NaCl solution by 530 mV relative to the steel's free corrosion potential, demonstrating a notably enhanced photoelectrochemical cathodic protection effect.

Key wordsTi    anodic oxidation    chemical vapor deposition    chemical bath deposition    TiO2 nanotube    g-C3N4    Ag    photocathodic protection
收稿日期: 2024-04-08     
ZTFLH:  TG174.41  
基金资助:国家自然科学基金项目(21573182)
通讯作者: 杜荣归,rgdu@xmu.edu.cn,主要从事材料电化学和腐蚀电化学研究; 董士刚,sgdong@xmu.edu.cn,主要从事腐蚀电化学研究
Corresponding author: DU Ronggui, professor, Tel: 13959276526, E-mail: rgdu@xmu.edu.cn; DONG Shigang, senior engineer, Tel: 13696994309, E-mail: sgdong@xmu.edu.cn
作者简介: 官自超,男,1988年生,博士
图1  TiO2纳米管复合膜制备示意图
图2  TiO2纳米管膜及其复合膜表面形貌的SEM像
图3  不同膜样品的EDS
SampleTiOCNAg
TiO248.4351.57---
g-C3N4/TiO222.8729.9433.8113.38-
Ag/TiO245.6353.81--0.56
Ag/g-C3N4/TiO223.4330.7633.5812.000.23
表1  不同膜样品表面成分分析结果 (atomic fraction / %)
图4  TiO2纳米管阵列膜和Ag/g-C3N4/TiO2复合膜的XPS
图5  TiO2膜、g-C3N4/TiO2复合膜、Ag/TiO2复合膜和Ag/g-C3N4/TiO2复合膜的紫外-可见吸收光谱
图6  TiO2膜、g-C3N4/TiO2复合膜、Ag/TiO2复合膜和Ag/g-C3N4/TiO2复合膜样品的光致发光光谱
图7  TiO2膜、g-C3N4/TiO2复合膜、Ag/TiO2复合膜和Ag/g-C3N4/TiO2复合膜在间歇白光照射下的光电流响应
图8  403不锈钢(403SS)在不同条件下电位随时间的变化曲线
图9  不同条件下0.5 mol/L NaCl溶液中403SS的EIS
图10  403SS在0.5 mol/L NaCl溶液中的等效电路模型
SampleRsRctRCPECPE1
Ω·cm2kΩ·cm2kΩ·cm2Y0 / (10-5 Ω-1·cm-2·s n )nY0 / (10-5 Ω-1·cm-2·s n )n
403SS8.80161.3-7.910.87--
403SS-TiO28.5022.11.1616.10.8712.30.79
403SS-Ag/g-C3N4/TiO28.4211.99.9513.40.7814.40.75
表2  403SS在0.5 mol/L NaCl溶液中EIS拟合结果
[1] Schneider J, Matsuoka M, Takeuchi M, et al. Understanding TiO2 photocatalysis: Mechanisms and materials [J]. Chem. Rev., 2014, 114: 9919
[2] Lee K, Mazare A, Schmuki P. One-dimensional titanium dioxide nanomaterials: Nanotubes [J]. Chem. Rev., 2014, 114: 9385
[3] Wang X T, Xu H, Nan Y B, et al. Research progress of TiO2 photocathodic protection to metals in marine environment [J]. J. Oceanol. Limnol., 2020, 38: 1018
[4] Li H, Cui X Q, Song W Z, et al. Direct Z-scheme MgIn2S4/TiO2 heterojunction for enhanced photocathodic protection of metals under visible light [J]. Nanotechnology, 2022, 33: 165703
[5] Guan Z C, Wang H P, Wang X, et al. Fabrication of heterostructured β-Bi2O3-TiO2 nanotube array composite film for photoelectrochemical cathodic protection applications [J]. Corros. Sci., 2018, 136: 60
[6] Sun W X, Cui S W, Wei N, et al. Hierarchical WO3/TiO2 nanotube nanocomposites for efficient photocathodic protection of 304 stainless steel under visible light [J]. J. Alloys Compd., 2018, 749: 741
[7] Feng C, Chen Z Y, Jing J P, et al. A novel TiO2 nanotube arrays/MgTi x O y multiphase-heterojunction film with high efficiency for photoelectrochemical cathodic protection [J]. Corros. Sci., 2020, 166: 108441
[8] Jin P, Guan Z C, Liang Y, et al. Photocathodic protection on stainless steel by heterostructured NiO/TiO2 nanotube array film with charge storage capability [J]. Acta Phys. -Chim. Sin., 2021, 37: 1906033
[8] 金 飘, 官自超, 梁 燕 等. NiO/TiO2异质结构纳米管阵列膜对不锈钢的光生阴极保护及其储能性能(英文) [J]. 物理化学学报, 2021, 37: 1906033
[9] Li W F, Wet L C, Shen T, et al. Ingenious preparation of “layered-closed” TiO2-BiVO4-CdS film and its highly stable and sensitive photoelectrochemical cathodic protection performance [J]. Chem. Eng. J., 2022, 429: 132511
[10] Groenewolt M, Antonietti M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices [J]. Adv. Mater., 2005, 17: 1789
[11] Wang X C, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J]. Nat. Mater., 2009, 8: 76
[12] Li W, Sohail M, Anwar U, et al. Recent progress in g-C3N4-based materials for remarkable photocatalytic sustainable energy [J]. Int. J. Hydrogen Energy, 2022, 47: 21067
[13] Naseri A, Samadi M, Pourjavadi A, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: Recent advances and future development directions [J]. J. Mater. Chem., 2017, 5A: 23406
[14] Li N, Kong Z Z, Chen X Z, et al. Research progress of novel two-dimensional materials in photocatalysis and electrocatalysis [J]. J. Inorg. Mater., 2020, 35: 735
[15] Yang M M, Liu J, Zhang X, et al. C3N4-sensitized TiO2 nanotube arrays with enhanced visible-light photoelectrochemical performance [J]. Phys. Chem. Chem. Phys., 2015, 17: 17887
[16] Sun B, Lu N, Su Y, et al. Decoration of TiO2 nanotube arrays by graphitic-C3N4 quantum dots with improved photoelectrocatalytic performance [J]. Appl. Surf. Sci., 2017, 394: 479
[17] Imbar A, Vadivel V K, Mamane H. Solvothermal synthesis of g-C3N4/TiO2 hybrid photocatalyst with a broaden activation spectrum [J]. Catalysts, 2023, 13: 46
[18] Pham M T, Nguyen T M T, Bui D P, et al. Enhancing quantum efficiency at Ag/g-C3N4 interfaces for rapid removal of nitric oxide under visible light [J]. Sustain. Chem. Pharm., 2022, 25: 100596
[19] Xu J T, Huang Y Y, Zhang S H, et al. Plasmon-induced hot carrier separation across multicomponent heterostructure in Ag@AgCl@g-C3N4 composites for recyclable detection-removal of organic pollutions via SERS sensing [J]. Appl. Surf. Sci., 2023, 610: 155604
[20] Moradi R, Yousefi R, Adelpour Z, et al. The effects of Ag concentration on toluene gas sensing performance of Ag NPs decorated on g-C3N4 sheets [J]. J. Alloys Compd., 2023, 932: 167539
[21] Qi H P, Wang H L, Zhao D Y, et al. Preparation and photocatalytic activity of Ag-modified GO-TiO2 mesocrystals under visible light irradiation [J]. Appl. Surf. Sci., 2019, 480: 105
[22] Zhao S D, Chen J R, Liu Y F, et al. Silver nanoparticles confined in shell-in-shell hollow TiO2 manifesting efficiently photocatalytic activity and stability [J]. Chem. Eng. J., 2019, 367: 249
[23] Wang C H, Qin D D, Shan D L, et al. Assembly of g-C3N4-based type II and Z-scheme heterojunction anodes with improved charge separation for photoelectrojunction water oxidation [J]. Phys. Chem. Chem. Phys., 2017, 19: 4507
[24] Zhang Q, Wang H, Chen S, et al. Three-dimensional TiO2 nanotube arrays combined with g-C3N4 quantum dots for visible light-driven photocatalytic hydrogen production [J]. RSC Adv., 2017, 7: 13223
[25] Liu H, Yu D Q, Sun T B, et al. Fabrication of surface alkalinized g-C3N4 and TiO2 composite for the synergistic adsorption-photocatalytic degradation of methylene blue [J]. Appl. Surf. Sci., 2019, 473: 855
[26] Fajrina N, Tahir M. 2D-montmorillonite-dispersed g-C3N4/TiO2 2D/0D nanocomposite for enhanced photo-induced H2 evolution from glycerol-water mixture [J]. Appl. Surf. Sci., 2019, 471: 1053
[27] Zhou D T, Chen Z, Yang Q, et al. Facile construction of g-C3N4 nanosheets/TiO2 nanotube arrays as Z-scheme photocatalyst with enhanced visible-light performance [J]. ChemCatChem, 2016, 8: 3064
[28] Ni J F, Fu S D, Yuan Y F, et al. Boosting sodium storage in TiO2 nanotube arrays through surface phosphorylation [J]. Adv. Mater., 2018, 30: 1704337
[29] Lai Y K, Sun L, Chen Y C, et al. Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity [J]. J. Electrochem. Soc., 2006, 153: D123
[30] Sun L, Li J, Wang C L, et al. Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity [J]. J. Hazard. Mater., 2009, 171: 1045
[31] Xie K P, Sun L, Wang C L, et al. Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition [J]. Electrochim. Acta, 2010, 55: 7211
[32] Jing L Q, Qu Y C, Wang B Q, et al. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity [J]. Sol. Energy Mater. Sol. Cells, 2006, 90: 1773
[33] Etacheri V, Di Valentin C, Schneider J, et al. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments [J]. J. Photochem. Photobiol, 2015, 25C: 1
[34] Wang Q Y, Zhong J S, Zhang M, et al. In situ fabrication of TiO2 nanotube arrays sensitized by Ag nanoparticles for enhanced photoelectrochemical performance [J]. Mater. Lett., 2016, 182: 163
[35] Ge M Z, Cao C Y, Li S H, et al. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting [J]. Nanoscale, 2016, 8: 5226
[36] Liu W J, Yin K C, He F, et al. A highly efficient reduced graphene oxide/SnO2/TiO2 composite as photoanode for photocathodic protection of 304 stainless steel [J]. Mater. Res. Bull., 2019, 113: 6
[37] Zuo S X, Liu Z, Liu W J, et al. TiO2 nanorod arrays on the conductive mica combine photoelectrochemical cathodic protection with barrier properties [J]. J. Alloys Compd., 2019, 776: 529
[38] Cui J, Pei Y S. Enhanced photocathodic protection performance of Fe2O3/TiO2 heterojunction for carbon steel under simulated solar light [J]. J. Alloys Compd., 2019, 779: 183
[39] Yang Y, Cheng Y F. One-step facile preparation of ZnO nanorods as high-performance photoanodes for photoelectrochemical cathodic protection [J]. Electrochim. Acta, 2018, 276: 311
[40] Guo Y, Jin P, Shao M H, et al. Effect of an environmentally-friendly diisooctyl sebacate-based mixed corrosion inhibitor on reinforcing steel [J]. Acta Phys. -Chim. Sin., 2022, 38: 2003033
[40] 郭 亚, 金 飘, 邵敏华 等. 基于癸二酸二异辛酯的环保型复合缓蚀剂对钢筋的缓蚀效应(英文) [J]. 物理化学学报, 2022, 38: 2003033
[41] Pan G T, Li J H, Zhang G G, et al. Binder-integrated Bi/BiOI/TiO2 as an anti-chloride corrosion coating for enhanced photocathodic protection of 304 stainless steel in simulated seawater [J]. J. Alloys Compd., 2023, 938: 168469
[1] 张晓晨, 李静, 李长记, 熊良银, 刘实. Zr ODS FeCrAl合金在550Pb-Bi熔液中的腐蚀行为[J]. 金属学报, 2025, 61(9): 1320-1334.
[2] 毕健浩男, 张艳, 王振玉, 周晟昊, 刘永跃, 张小岩, 汪爱英. Mo含量对CrAlMoN涂层微观结构、力学性能及摩擦学性能的影响[J]. 金属学报, 2025, 61(9): 1413-1424.
[3] 周志春, 刘仁慈, 张建达, 杨超, 崔玉友, 杨锐. γ-TiAl合金在700 ℃空气中的长时高温氧化行为和组织演变[J]. 金属学报, 2025, 61(8): 1217-1228.
[4] 徐小严, 方超, 邱建科, 张蒙蒙, 史栋刚, 马英杰, 雷家峰, 杨锐. 峰值应力对Ti6242压气机盘锻件室温保载效应的影响[J]. 金属学报, 2025, 61(8): 1141-1152.
[5] 谢旭, 万一博, 钟明, 邹晓东, 王聪. CaF2-TiO2 焊剂作用下EH36船板钢气电立焊焊缝金属组织优化及力学性能调控[J]. 金属学报, 2025, 61(7): 998-1010.
[6] 王强, 李小兵, 郝俊杰, 陈波, 张滨, 张二林, 刘奎. 一种新型Ti-Al-Mn-Nb合金的固态相变行为[J]. 金属学报, 2025, 61(7): 1060-1070.
[7] 郝旭邦, 程伟丽, 李戬, 王利飞, 崔泽琴, 闫国庆, 翟凯, 余晖. 低合金化Mg-Ag镁空气电池阳极材料的电化学行为和放电性能[J]. 金属学报, 2025, 61(6): 837-847.
[8] 刘子儒, 郭乾应, 张虹雨, 刘永长. V添加对Ti2AlNb合金组织演变及硬度的影响[J]. 金属学报, 2025, 61(6): 848-856.
[9] 尚学文, 崔潇潇, 徐磊, 卢正冠. 粉末粒度对钛合金闭式叶轮成形的影响[J]. 金属学报, 2025, 61(2): 253-264.
[10] 叶献文, 姚志浩, 王洪瑛, 王子成, 张砻耀, 董建新. 增材制造难变形高温合金GH4975的裂纹形成及其愈合机制[J]. 金属学报, 2025, 61(12): 1845-1857.
[11] 孙昊, 江鸿翔, 赵九洲, 张丽丽, 何杰. 微重力条件下Gd-Co-Ti合金原位粒子复合凝固组织的形成[J]. 金属学报, 2025, 61(12): 1933-1944.
[12] 王子彧, 陈志勇, 王新, 王清江. Ti2AlNb薄板的织构及其对拉伸性能各向异性的影响[J]. 金属学报, 2025, 61(11): 1625-1637.
[13] 张瑶, 齐敏, 孙佳, 吴婷, 马英杰, 王皞, 杨锐. 3D相场模拟研究Ti-6Al-4V合金片层组织形貌的影响因素[J]. 金属学报, 2024, 60(9): 1265-1278.
[14] 李天瑞, 许瑜倩, 吴文平, 甘文萱, 杨永, 刘国怀, 王昭东. VB元素对Ti-44Al-5Nb-1Mo合金显微组织及热变形机制的影响[J]. 金属学报, 2024, 60(5): 650-660.
[15] 江浩文, 彭伟, 范增为, 汪杨鑫, 刘腾轼, 董瀚. Ag对奥氏体不锈钢组织和力学性能的影响[J]. 金属学报, 2024, 60(4): 434-442.