|
|
|
| Ti表面Ag/g-C3N4 共敏化TiO2 纳米膜的构筑及其光电化学行为 |
官自超1,2, 胡娟1,3, 时海燕1, 董士刚4( ), 刘亚安5, 王霞1, 金飘1, 杜荣归1( ) |
1 厦门大学 化学化工学院 表界面化学全国重点实验室 厦门 361005 2 中海油常州涂料化工研究院有限公司 常州 213016 3 国家增材制造产品质量检验检测中心 无锡 214101 4 厦门大学 能源学院 厦门 361102 5 常州大学 材料科学与工程学院 常州 213164 |
|
| Fabrication and Photoelectrochemical Properties of Ag/g-C3N4 Co-Sensitized TiO2 Nanotube Composite Film on Ti Substrate |
GUAN Zichao1,2, HU Juan1,3, SHI Haiyan1, DONG Shigang4( ), Liu Ya'an5, WANG Xia1, JIN Piao1, DU Ronggui1( ) |
1 State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China 2 CNOOC Changzhou Paint and Coatings Industry Research Institute Co. Ltd. , Changzhou 213016, China 3 National Center of Inspection on Additive Manufacturing Product Quality, Wuxi 214101, China 4 College of Energy, Xiamen University, Xiamen 361102, China 5 School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China |
引用本文:
官自超, 胡娟, 时海燕, 董士刚, 刘亚安, 王霞, 金飘, 杜荣归. Ti表面Ag/g-C3N4 共敏化TiO2 纳米膜的构筑及其光电化学行为[J]. 金属学报, 2025, 61(12): 1769-1780.
Zichao GUAN,
Juan HU,
Haiyan SHI,
Shigang DONG,
Ya'an Liu,
Xia WANG,
Piao JIN,
Ronggui DU.
Fabrication and Photoelectrochemical Properties of Ag/g-C3N4 Co-Sensitized TiO2 Nanotube Composite Film on Ti Substrate[J]. Acta Metall Sin, 2025, 61(12): 1769-1780.
| [1] |
Schneider J, Matsuoka M, Takeuchi M, et al. Understanding TiO2 photocatalysis: Mechanisms and materials [J]. Chem. Rev., 2014, 114: 9919
|
| [2] |
Lee K, Mazare A, Schmuki P. One-dimensional titanium dioxide nanomaterials: Nanotubes [J]. Chem. Rev., 2014, 114: 9385
|
| [3] |
Wang X T, Xu H, Nan Y B, et al. Research progress of TiO2 photocathodic protection to metals in marine environment [J]. J. Oceanol. Limnol., 2020, 38: 1018
|
| [4] |
Li H, Cui X Q, Song W Z, et al. Direct Z-scheme MgIn2S4/TiO2 heterojunction for enhanced photocathodic protection of metals under visible light [J]. Nanotechnology, 2022, 33: 165703
|
| [5] |
Guan Z C, Wang H P, Wang X, et al. Fabrication of heterostructured β-Bi2O3-TiO2 nanotube array composite film for photoelectrochemical cathodic protection applications [J]. Corros. Sci., 2018, 136: 60
|
| [6] |
Sun W X, Cui S W, Wei N, et al. Hierarchical WO3/TiO2 nanotube nanocomposites for efficient photocathodic protection of 304 stainless steel under visible light [J]. J. Alloys Compd., 2018, 749: 741
|
| [7] |
Feng C, Chen Z Y, Jing J P, et al. A novel TiO2 nanotube arrays/MgTi x O y multiphase-heterojunction film with high efficiency for photoelectrochemical cathodic protection [J]. Corros. Sci., 2020, 166: 108441
|
| [8] |
Jin P, Guan Z C, Liang Y, et al. Photocathodic protection on stainless steel by heterostructured NiO/TiO2 nanotube array film with charge storage capability [J]. Acta Phys. -Chim. Sin., 2021, 37: 1906033
|
| [8] |
金 飘, 官自超, 梁 燕 等. NiO/TiO2异质结构纳米管阵列膜对不锈钢的光生阴极保护及其储能性能(英文) [J]. 物理化学学报, 2021, 37: 1906033
|
| [9] |
Li W F, Wet L C, Shen T, et al. Ingenious preparation of “layered-closed” TiO2-BiVO4-CdS film and its highly stable and sensitive photoelectrochemical cathodic protection performance [J]. Chem. Eng. J., 2022, 429: 132511
|
| [10] |
Groenewolt M, Antonietti M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices [J]. Adv. Mater., 2005, 17: 1789
|
| [11] |
Wang X C, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J]. Nat. Mater., 2009, 8: 76
|
| [12] |
Li W, Sohail M, Anwar U, et al. Recent progress in g-C3N4-based materials for remarkable photocatalytic sustainable energy [J]. Int. J. Hydrogen Energy, 2022, 47: 21067
|
| [13] |
Naseri A, Samadi M, Pourjavadi A, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: Recent advances and future development directions [J]. J. Mater. Chem., 2017, 5A: 23406
|
| [14] |
Li N, Kong Z Z, Chen X Z, et al. Research progress of novel two-dimensional materials in photocatalysis and electrocatalysis [J]. J. Inorg. Mater., 2020, 35: 735
|
| [15] |
Yang M M, Liu J, Zhang X, et al. C3N4-sensitized TiO2 nanotube arrays with enhanced visible-light photoelectrochemical performance [J]. Phys. Chem. Chem. Phys., 2015, 17: 17887
|
| [16] |
Sun B, Lu N, Su Y, et al. Decoration of TiO2 nanotube arrays by graphitic-C3N4 quantum dots with improved photoelectrocatalytic performance [J]. Appl. Surf. Sci., 2017, 394: 479
|
| [17] |
Imbar A, Vadivel V K, Mamane H. Solvothermal synthesis of g-C3N4/TiO2 hybrid photocatalyst with a broaden activation spectrum [J]. Catalysts, 2023, 13: 46
|
| [18] |
Pham M T, Nguyen T M T, Bui D P, et al. Enhancing quantum efficiency at Ag/g-C3N4 interfaces for rapid removal of nitric oxide under visible light [J]. Sustain. Chem. Pharm., 2022, 25: 100596
|
| [19] |
Xu J T, Huang Y Y, Zhang S H, et al. Plasmon-induced hot carrier separation across multicomponent heterostructure in Ag@AgCl@g-C3N4 composites for recyclable detection-removal of organic pollutions via SERS sensing [J]. Appl. Surf. Sci., 2023, 610: 155604
|
| [20] |
Moradi R, Yousefi R, Adelpour Z, et al. The effects of Ag concentration on toluene gas sensing performance of Ag NPs decorated on g-C3N4 sheets [J]. J. Alloys Compd., 2023, 932: 167539
|
| [21] |
Qi H P, Wang H L, Zhao D Y, et al. Preparation and photocatalytic activity of Ag-modified GO-TiO2 mesocrystals under visible light irradiation [J]. Appl. Surf. Sci., 2019, 480: 105
|
| [22] |
Zhao S D, Chen J R, Liu Y F, et al. Silver nanoparticles confined in shell-in-shell hollow TiO2 manifesting efficiently photocatalytic activity and stability [J]. Chem. Eng. J., 2019, 367: 249
|
| [23] |
Wang C H, Qin D D, Shan D L, et al. Assembly of g-C3N4-based type II and Z-scheme heterojunction anodes with improved charge separation for photoelectrojunction water oxidation [J]. Phys. Chem. Chem. Phys., 2017, 19: 4507
|
| [24] |
Zhang Q, Wang H, Chen S, et al. Three-dimensional TiO2 nanotube arrays combined with g-C3N4 quantum dots for visible light-driven photocatalytic hydrogen production [J]. RSC Adv., 2017, 7: 13223
|
| [25] |
Liu H, Yu D Q, Sun T B, et al. Fabrication of surface alkalinized g-C3N4 and TiO2 composite for the synergistic adsorption-photocatalytic degradation of methylene blue [J]. Appl. Surf. Sci., 2019, 473: 855
|
| [26] |
Fajrina N, Tahir M. 2D-montmorillonite-dispersed g-C3N4/TiO2 2D/0D nanocomposite for enhanced photo-induced H2 evolution from glycerol-water mixture [J]. Appl. Surf. Sci., 2019, 471: 1053
|
| [27] |
Zhou D T, Chen Z, Yang Q, et al. Facile construction of g-C3N4 nanosheets/TiO2 nanotube arrays as Z-scheme photocatalyst with enhanced visible-light performance [J]. ChemCatChem, 2016, 8: 3064
|
| [28] |
Ni J F, Fu S D, Yuan Y F, et al. Boosting sodium storage in TiO2 nanotube arrays through surface phosphorylation [J]. Adv. Mater., 2018, 30: 1704337
|
| [29] |
Lai Y K, Sun L, Chen Y C, et al. Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity [J]. J. Electrochem. Soc., 2006, 153: D123
|
| [30] |
Sun L, Li J, Wang C L, et al. Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity [J]. J. Hazard. Mater., 2009, 171: 1045
|
| [31] |
Xie K P, Sun L, Wang C L, et al. Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition [J]. Electrochim. Acta, 2010, 55: 7211
|
| [32] |
Jing L Q, Qu Y C, Wang B Q, et al. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity [J]. Sol. Energy Mater. Sol. Cells, 2006, 90: 1773
|
| [33] |
Etacheri V, Di Valentin C, Schneider J, et al. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments [J]. J. Photochem. Photobiol, 2015, 25C: 1
|
| [34] |
Wang Q Y, Zhong J S, Zhang M, et al. In situ fabrication of TiO2 nanotube arrays sensitized by Ag nanoparticles for enhanced photoelectrochemical performance [J]. Mater. Lett., 2016, 182: 163
|
| [35] |
Ge M Z, Cao C Y, Li S H, et al. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting [J]. Nanoscale, 2016, 8: 5226
|
| [36] |
Liu W J, Yin K C, He F, et al. A highly efficient reduced graphene oxide/SnO2/TiO2 composite as photoanode for photocathodic protection of 304 stainless steel [J]. Mater. Res. Bull., 2019, 113: 6
|
| [37] |
Zuo S X, Liu Z, Liu W J, et al. TiO2 nanorod arrays on the conductive mica combine photoelectrochemical cathodic protection with barrier properties [J]. J. Alloys Compd., 2019, 776: 529
|
| [38] |
Cui J, Pei Y S. Enhanced photocathodic protection performance of Fe2O3/TiO2 heterojunction for carbon steel under simulated solar light [J]. J. Alloys Compd., 2019, 779: 183
|
| [39] |
Yang Y, Cheng Y F. One-step facile preparation of ZnO nanorods as high-performance photoanodes for photoelectrochemical cathodic protection [J]. Electrochim. Acta, 2018, 276: 311
|
| [40] |
Guo Y, Jin P, Shao M H, et al. Effect of an environmentally-friendly diisooctyl sebacate-based mixed corrosion inhibitor on reinforcing steel [J]. Acta Phys. -Chim. Sin., 2022, 38: 2003033
|
| [40] |
郭 亚, 金 飘, 邵敏华 等. 基于癸二酸二异辛酯的环保型复合缓蚀剂对钢筋的缓蚀效应(英文) [J]. 物理化学学报, 2022, 38: 2003033
|
| [41] |
Pan G T, Li J H, Zhang G G, et al. Binder-integrated Bi/BiOI/TiO2 as an anti-chloride corrosion coating for enhanced photocathodic protection of 304 stainless steel in simulated seawater [J]. J. Alloys Compd., 2023, 938: 168469
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|