Please wait a minute...
金属学报  2025, Vol. 61 Issue (1): 99-108    DOI: 10.11900/0412.1961.2024.00291
  研究论文 本期目录 | 过刊浏览 |
过冷(Fe1 -x Co x)79.3B20.7 合金的凝固
杨林1, 马长松1, 刘连杰1,2, 李金富1,3()
1 上海交通大学 材料科学与工程学院 金属基复合材料国家重点实验室 上海 200240
2 中国工程物理研究院材料研究所 绵阳 621907
3 上海交通大学 材料科学与工程学院 上海市激光制造与材料改性重点实验室 上海 200240
Solidification of Undercooled (Fe1 -x Co x)79.3B20.7 Alloys
YANG Lin1, MA Changsong1, LIU Lianjie1,2, LI Jinfu1,3()
1 State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
3 Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

杨林, 马长松, 刘连杰, 李金富. 过冷(Fe1 -x Co x)79.3B20.7 合金的凝固[J]. 金属学报, 2025, 61(1): 99-108.
Lin YANG, Changsong MA, Lianjie LIU, Jinfu LI. Solidification of Undercooled (Fe1 -x Co x)79.3B20.7 Alloys[J]. Acta Metall Sin, 2025, 61(1): 99-108.

全文: PDF(4629 KB)   HTML
摘要: 

M23B6金属硼化物是很多金属材料中的强化相。为揭示该化合物相在Fe-Co-B合金中的形成问题,本工作采用熔融玻璃净化法进行了名义成分合金(Fe1 - x Co x)79.3B20.7 (x = 0~1)的深过冷凝固实验。研究发现:当x ≤0.6时,随着过冷度的增加,初生相依次从M2B、M23B6转变为α-M/M3B,并且0.4 < x ≤0.6成分的合金存在L + M2B→M3B的包晶转变;对于x >0.6的合金,小过冷度下凝固的初生相为M3B,随着过冷度的增加,初生相进一步从M2B、M23B6α-M/M3B变化。随着Co含量增加,M23B6相析出的临界过冷度减小,M23B6相的稳定性提高。

关键词 Fe-Co-B合金过冷非平衡凝固相选择    
Abstract

M-B (M = Fe, Co, Ni) alloys have garnered significant attention in the automotive, petrochemical, and power electronics industries owing to their excellent corrosion resistance, wear resistance, and high-temperature strength. The service performances of the M-B alloys are closely related to that of borides. Among them, M23B6 generally exists as a metastable phase. However, the understanding of its formation is limited compared to that of other borides. To reveal the effect of Fe/Co content ratio on the solidification behavior of the Fe-Co-B alloys, particularly the formation of M23B6 phase, alloys with nominal composition of (Fe1 - x Co x)79.3B20.7 (x = 0-1) were undercooled using the melt fluxing technique. Consequently, the solidification behaviors were systematically investigated. With the increase in the Co content, the stable eutectic reaction changed from L→α-M + M2B for x <0.4 to L→α-M + M3B for x >0.4. Consequently, the two eutectic reactions occurred at the same temperature at x =0.4, and a peritectic reaction L + M2B→M3B was observed at x > 0.4. With the increase in the undercooling, the primary phase changes from M2B and M23B6 to α-M/M3B in the alloys with x ≤0.6, and from M3B, M2B, and M23B6 to α-M/M3B in the alloys with x >0.6. The increase in Co content reduced the critical undercooling for the M23B6 phase to precipitate primarily and improved its stability, that is, the primary M23B6 phase decomposed into α-M/M2B in the following cooling process when the Co content is not excessively high. However, it could sometimes be reserved to room temperature in case of a very large Co content.

Key wordsFe-Co-B alloy    undercooling    non-equilibrium solidification    phase selection
收稿日期: 2024-08-20     
ZTFLH:  TG111.4  
基金资助:国家自然科学基金项目(52231002);国家自然科学基金项目(51821001)
通讯作者: 李金富,jfli@sjtu.edu.cn,主要从事非平衡凝固理论及先进金属材料方面的研究
Corresponding author: LI Jinfu, professor, Tel: (021)54748530, E-mail: jfli@sjtu.edu.cn
作者简介: 杨 林,男,1994年生,博士生
图1  Fe-B和Co-B二元相图、(Fe1 - x Co x)79.3B20.7母合金锭的XRD谱及(Fe1 - x Co x)79.3B20.7合金加热熔化差示扫描量热(DSC)曲线
图2  (Fe1 - x Co x)79.3B20.7母合金锭组织的OM像
图3  (Fe0.8Co0.2)79.3B20.7合金的凝固冷却曲线、XRD谱及不同过冷度(ΔT)下合金组织的OM像
图4  (Fe0.6Co0.4)79.3B20.7合金的凝固冷却曲线、XRD谱及不同过冷度下合金组织的OM像
图5  ΔT = 44 K时(Fe0.6Co0.4)79.3B20.7合金的组织
图6  (Fe0.4Co0.6)79.3B20.7合金的凝固冷却曲线、XRD谱及不同过冷度下合金组织的OM像和EBSD像
图7  (Fe0.2Co0.8)79.3B20.7合金的凝固冷却曲线、XRD谱及不同过冷度下合金组织的OM像和EBSD像
图8  x = 0.4、0.6时(Fe1 - x Co x)-B伪二元系示意相图
图9  (Fe1 - x Co x)79.3B20.7合金各初生相析出的临界过冷度范围及其与Co含量的关系
图10  各成分合金的凝固路径示意图
1 Zhang J J, Liu J C, Liao H M, et al. A review on relationship between morphology of boride of Fe-B alloys and the wear/corrosion resistant properties and mechanisms[J]. J. Mater. Res. Technol., 2019, 8: 6308
2 Liu Z W, Zhou B, Liao X F, et al. Research status and future development of (Ce, La, Y)-F-B permanent magnets based on full high-abundance rare earth elements[J]. Acta Metall. Sin., 2024, 60: 585
2 刘仲武, 周 帮, 廖雪峰 等. 全高丰度稀土(Ce, La, Y)-Fe-B永磁的研究现状和未来发展[J]. 金属学报, 2024, 60: 585
doi: 10.11900/0412.1961.2023.00117
3 Ünal E, Yaşar A, Karahan İ H. A review of electrodeposited composite coatings with Ni-B alloy matrix[J]. Mater. Res. Express, 2019, 6: 092004
4 Liu Z W, He J Y. Several issues on the development of grain boundary diffusion process for Nd-Fe-B permanent magnets[J]. Acta Metall. Sin., 2021, 57: 1155
4 刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57: 1155
doi: 10.11900/0412.1961.2020.00438
5 Barati Q, Hadavi S M M. Electroless Ni-B and composite coatings: A critical review on formation mechanism, properties, applications and future trends[J]. Surf. Interfaces, 2020, 21: 100702
6 Xu X L, Hao Y C, Wu Q, et al. Microstructure refinement mechanisms in undercooled solidification of binary and ternary nickel based alloys[J]. J. Mater. Res. Technol., 2023, 24: 737
7 Madah F, Amadeh A A, Dehghanian C. Investigation on the phase transformation of electroless Ni-B coating after dry sliding against alumina ball[J]. J. Alloys Compd., 2016, 658: 272
8 Pal S, Jayaram V. Effect of microstructure on the hardness and dry sliding behavior of electroless Ni-B coating[J]. Materialia, 2018, 4: 47
9 Safavi M S, Tanhaei M, Ahmadipour M F, et al. Electrodeposited Ni-Co alloy-particle composite coatings: A comprehensive review[J]. Surf. Coat. Technol., 2020, 382: 125153
10 Li J F, Zhou Y H. Remelting of primary solid in rapid solidification of deeply undercooled alloy melts[J]. Acta Metall. Sin., 2018, 54: 627
doi: 10.11900/0412.1961.2017.00537
10 李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54: 627
doi: 10.11900/0412.1961.2017.00537
11 Liang L, Xu X L, Zhao Y H, et al. Solidification microstructure evolution and grain refinement mechanism under high undercooling of undercooled Ni90Cu10 alloys[J]. Mater. Res. Express, 2019, 6(12): 1265k5
12 Li J F, Lü Y L, Yang G C, et al. Secondary arm spacing of undercooled Ni50Cu50 alloy[J]. Acta Metall. Sin., 1998, 34: 586
12 李金富, 吕衣礼, 杨根仓 等. 过冷Ni50Cu50合金的二次枝晶间距[J]. 金属学报, 1998, 34: 586
13 Quirinale D G, Rustan G E, Kreyssig A, et al. Synergistic stabilization of metastable Fe23B6 and γ-Fe in undercooled Fe83B17 [J]. Appl. Phys. Lett., 2015, 106: 241906
14 Liu L J, Yang L, Li J F. Solidification pathways in highly undercooled Co79.3B20.7 alloy[J]. Metall. Mater. Trans., 2021, 52A: 4324
15 Wei X X, Xu W, Kang J L, et al. Metastable Co23B6 phase solidified from deeply undercooled Co79.3B20.7 alloy melt[J]. J. Mater. Sci., 2016, 51: 6436
16 Xu J F, Liu F, Dang B. Phase selection in undercooled Ni-3.3 wt pct B alloy melt[J]. Metall. Mater. Trans., 2013, 44A: 1401
17 Liu F, Xu J F, Zhang D, et al. Solidification of highly undercooled hypereutectic Ni-Ni3B alloy melt[J]. Metall. Mater. Trans., 2014, 45A: 4810
18 Battezzati L, Antonione C, Baricco M. Undercooling of Ni-B and Fe-B alloys and their metastable phase diagrams[J]. J. Alloys Compd., 1997, 247: 164
19 Ohodnicki Jr P R, Cates N C, Laughlin D E, et al. Ab initio theoretical study of magnetization and phase stability of the (Fe, Co, Ni)23B6 and (Fe, Co, Ni)23Zr6 structures of Cr23C6 and Mn23Th6 prototypes[J]. Phys. Rev., 2008, 78B: 144414
20 Li J F, Li W. Structure and glass-forming ability of Al-based amorphous alloys[J]. Acta Metall. Sin., 2022, 58: 457
doi: 10.11900/0412.1961.2021.00561
20 李金富, 李 伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58: 457
doi: 10.11900/0412.1961.2021.00561
21 Yang G, Liu W G, Han X B, et al. Effects of alloying substitutions on the anti-disproportionation behavior of ZrCo alloy[J]. Int. J. Hydrogen Energy, 2017, 42: 15782
22 Zhang Q S, Zhang W, Louzguine-Luzgin D V, et al. Effect of substituting elements on glass-forming ability of the new Zr48Cu36Al8Ag8 bulk metallic glass-forming alloy[J]. J. Alloys Compd., 2010, 504: S18
23 Wu M D, Wang J C, Li P L, et al. Research progress on the anti-disproportionation of the ZrCo alloy by element substitution[J]. Materials, 2020, 13: 3977
24 Xu T, Li R, Xiao R J, et al. Tuning glass formation and brittle behaviors by similar solvent element substitution in (Mn, Fe)-based bulk metallic glasses[J]. Mater. Sci. Eng., 2015, A626: 16
25 Mitrica D, Badea I C, Serban B A, et al. Complex concentrated alloys for substitution of critical raw materials in applications for extreme conditions[J]. Materials, 2021, 14: 1197
26 Yang T, Yuan Z M, Bu W G, et al. Effect of elemental substitution on the structure and hydrogen storage properties of LaMgNi4 alloy[J]. Mater. Des., 2016, 93: 46
27 Palumbo M, Cacciamani G, Bosco E, et al. Driving forces for crystal nucleation in Fe-B liquid and amorphous alloys[J]. Intermetallics, 2003, 11: 1293
28 Okamoto H. B-Fe (Boron-Iron)[J]. J. Phase Equilib. Diffus., 2004, 25: 297
29 Massalski T B, Okamoto H, Subramanian P R, et al. Binary Alloy Phase Diagrams[M]. 2nd Ed., Materials Park: ASM International, 1990: 482
30 Raghavan V. B-Co-Fe (Boron-Cobalt-Iron)[J]. J. Phase Equilib. Diffus., 2012, 33: 392
31 Liu Y Q, Zhao X S, Yang J, et al. Thermodynamic optimization of the boron-cobalt-iron system[J]. J. Alloys Compd., 2011, 509: 4805
32 Jackson K A, Uhlmann D R, Hunt J D. On the nature of crystal growth from the melt[J]. J. Cryst. Growth, 1967, 1: 1
33 Li M J, Kuribayashi K. Nucleation-controlled microstructures and anomalous eutectic formation in undercooled Co-Sn and Ni-Si eutectic melts[J]. Metall. Mater. Trans., 2003, 34A: 2999
34 Herlach D M. Non-equilibrium solidification of undercooled metallic metals[J]. Mater. Sci. Eng., 1994, R12: 177
35 Li M J, Ozawa S, Kuribayashi K. On determining the phase-selection principle in solidification from undercooled melts-competitive nucleation or competitive growth?[J]. Philos. Mag. Lett., 2004, 84: 483
36 Turnbull D. Kinetics of solidification of supercooled liquid mercury droplets[J]. J. Chem. Phys., 1952, 20: 411
37 Turnbull D. Formation of crystal nuclei in liquid metals[J]. J. Appl. Phys., 1950, 21: 1022
38 Wei X X, Xu W, Kang J L, et al. Phase selection in solidification of undercooled Co-B alloys[J]. J. Mater. Sci. Technol., 2017, 33: 352
doi: 10.1016/j.jmst.2016.09.012
[1] 王叶青, 付珂, 赵永柱, 苏礼季, 陈正. Fe7(CoNiMn)80B13 共晶高熵合金的深过冷非平衡凝固行为及微观组织演变[J]. 金属学报, 2025, 61(1): 143-153.
[2] 董蔚霞, 姚忠正, 刘思楠, 陈国星, 王循理, 吴桢舵, 兰司. Pd-Si金属玻璃液-液相变过程的短程-中程序结构演变规律[J]. 金属学报, 2024, 60(8): 1119-1129.
[3] 刘帅帅, 侯超楠, 王恩刚, 贾鹏. Zr61Cu25Al12Ti2Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为[J]. 金属学报, 2022, 58(6): 807-815.
[4] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[5] 许军锋, 张宝东, Peter K Galenko. 含有化合物相的共晶转变理论模型[J]. 金属学报, 2021, 57(10): 1320-1332.
[6] 胡宽辉, 毛新平, 周桂峰, 刘静, 王志奋. Si和Mn含量对超高强度热成形钢组织和性能的影响[J]. 金属学报, 2018, 54(8): 1105-1112.
[7] 李芸, 刘连杰, 李新明, 李金富. 过冷Co75B25合金的凝固[J]. 金属学报, 2018, 54(8): 1165-1170.
[8] 樊丹丹, 许军锋, 钟亚男, 坚增运. 过热温度和冷却速率对过冷Ti熔体凝固过程的影响[J]. 金属学报, 2018, 54(6): 844-850.
[9] 坚增运, 徐涛, 许军锋, 朱满, 常芳娥. 熔体-结晶相固-液界面能的研究进展[J]. 金属学报, 2018, 54(5): 766-772.
[10] 李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54(5): 627-636.
[11] 刘峰, 张旭, 张玉兵. 非平衡凝固与固态相变的一体化研究[J]. 金属学报, 2018, 54(5): 701-716.
[12] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[13] 朱姜蕾, 王庆, 王海鹏. 深过冷液态金属Cu的热物理性质和原子分布[J]. 金属学报, 2017, 53(8): 1018-1024.
[14] 严军辉,坚增运,朱满,常芳娥,许军锋. 深过冷Al-70%Si合金的凝固特性与微观组织*[J]. 金属学报, 2016, 52(8): 931-937.
[15] 陈正, 杨亚楠, 陈强, 许军峰, 唐跃跃, 刘峰. 过冷Fe82B17Si1合金的再辉效应模拟及组织演化*[J]. 金属学报, 2014, 50(7): 795-801.