Please wait a minute...
金属学报  2024, Vol. 60 Issue (9): 1200-1212    DOI: 10.11900/0412.1961.2022.00398
  研究论文 本期目录 | 过刊浏览 |
Si对一种9Cr铁素体/马氏体钢显微组织和力学性能的影响
张乾坤1,2, 胡小锋1(), 姜海昌1, 戎利建1
1.中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
2.中国科学技术大学 材料科学与工程学院 沈阳 110016
Effect of Si on Microstructure and Mechanical Properties of a 9Cr Ferritic/Martensitic Steel
ZHANG Qiankun1,2, HU Xiaofeng1(), JIANG Haichang1, RONG Lijian1
1.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

张乾坤, 胡小锋, 姜海昌, 戎利建. Si对一种9Cr铁素体/马氏体钢显微组织和力学性能的影响[J]. 金属学报, 2024, 60(9): 1200-1212.
Qiankun ZHANG, Xiaofeng HU, Haichang JIANG, Lijian RONG. Effect of Si on Microstructure and Mechanical Properties of a 9Cr Ferritic/Martensitic Steel[J]. Acta Metall Sin, 2024, 60(9): 1200-1212.

全文: PDF(4448 KB)   HTML
摘要: 

基于ASME标准成分的P91钢,设计了一种Si增强型的9Cr铁素体/马氏体钢(记为H-Si钢)。利用OM、FESEM、TEM、EBSD、拉伸和冲击等分析和检测技术,对P91和H-Si合金钢铸态、均质化态、回火态和时效态(550℃时效3000 h)的显微组织和力学性能进行了研究。结果表明,Si增强后会在合金钢中引入体积分数为3.9%的δ铁素体,但通过均质化处理可以将其完全消除。回火处理后,H-Si钢因Si含量较高,会形成富Si层包裹M23C6的现象,该富Si层阻碍了M23C6的粗化长大,使M23C6的尺寸小于P91钢中M23C6的尺寸。与此同时,在550℃时效处理时该富Si层同样会减缓M23C6的长大,同时还促进了Laves相的形核和生长,造成时效态H-Si钢具有较细的M23C6和较粗的Laves相。回火态H-Si钢因较高的Si含量和较细的M23C6,强度明显高于P91钢,而时效处理后因Laves相的析出,强度进一步提高。回火态P91和H-Si合金钢具有相近的冲击功(约210 J),断裂模式均为韧性断裂。时效处理后由于Laves相的析出,导致P91和H-Si合金钢的冲击功下降。因H-Si钢中Laves相的尺寸较大、数量较多,使H-Si钢出现了一定比例的解理区,导致冲击功下降更明显。

关键词 SiM23C6Laves相δ铁素体力学性能    
Abstract

Due to the worsening of environmental pollution and energy shortage, nuclear energy has become an increasingly important energy source, offering clean, high-energy, safe, and stable power to meet the needs of modern life and production. P91 steel is an excellent heat-resistant steel, widely used in nuclear power plants for its good mechanical properties, high thermal conductivity, and low irradiation swelling rate. However, with the emergence of lead and lead-bismuth eutectic (LBE) cooled fast reactors (LFRs), P91 steel's inferior compatibility with LBE has limited its use in LFR construction. To address this issue, 9Cr ferritic/martensitic steel with high Si content (H-Si steel) was designed in this study to develop a compatible structural material for LFR heat exchange tubes. In addition, the effects of Si on the microstructure and mechanical properties of as-cast, homogenized, tempered, and aged H-Si steel were investigated using various techniques, including OM, FESEM, TEM, EBSD, tensile, and impact tests. The results show that the increase in Si content leads to 3.9% δ ferrite (volume fraction) in as-cast H-Si steel, which can be eliminated completely by homogenization heat treatment. Tempering produces a Si-enriched layer around M23C6 due to the high Si content in the H-Si steel, which can suppress the rapid growth of M23C6 and maintain a smaller size of M23C6 than that of M23C6 in P91 steel. Meanwhile, the Si-enriched layer can slow down the growth of M23C6 and promote the nucleation and growth of the Laves phase during aging at 550°C, which induces smaller M23C6 and larger Laves phase in aged H-Si steel than that in aged P91. Due to the higher Si content and smaller M23C6, the tempered H-Si steel exhibits significantly higher strength than P91. After aging, the strength of H-Si steel further increases because of the precipitation of the Laves phase. Both tempered alloy steels have similar impact energy (about 210 J) and the fracture mode is ductile fracture. However, the precipitation of the Laves phase after aging decreases the impact energy of both alloy steels. The aged H-Si steel had a larger and more Laves phase, resulting in a partial cleavage area in the impact fracture surface and inducing a lower impact energy compared to H-Si steel.

Key wordsSi    M23C6    Laves phase    δ ferrite    mechanical property
收稿日期: 2022-08-15     
ZTFLH:  TG142.1  
基金资助:中核集团领创科研项目,中国科学院青年创新促进会项目(Y2021059);中国科学院战略重点研究项目(XDA28040200)
通讯作者: 胡小锋,xfhu@imr.ac.cn,主要从事高强高韧合金钢和铁素体/马氏体耐热钢的研制与开发
Corresponding author: HU Xiaofeng, professor, Tel: (024)23971981, E-mail: xfhu@imr.ac.cn
作者简介: 张乾坤,男,1998年生,硕士
SteelTempered stateAged state
YSUTSAZImpact energyYSUTSAZImpact energy
MPaMPa%%JMPaMPa%%J
P9156071423.57421655471622.368163
H-Si62875923..57421164478221.567114
表1  回火态和时效态P91和H-Si合金钢的室温拉伸性能和冲击功
图1  铸态P91和H-Si钢以及均质化处理后H-Si钢显微组织的OM像
图2  回火态P91和H-Si钢显微组织的OM像
图3  回火态P91和H-Si钢的SEM像以及P91钢中析出相的EDS分析
图4  回火态P91和H-Si钢的TEM像
图5  时效态P91和H-Si钢的SEM像
图6  时效态P91和H-Si钢的TEM像以及H-Si钢中析出相的EDS面扫描成分分析和Laves相的选区电子衍射(SAED)花样
图7  时效态P91和H-Si合金钢的EBSD相分布图
图8  P91和H-Si合金钢相转变温度的变化
PrecipitateTempered stateAged state
P91H-SiP91H-Si
M23C6106 ± 3582 ± 32135 ± 3898 ± 38
NbC515 ± 12512 ± 14512 ± 14514 ± 21
Laves phase--79 ± 32129 ± 47
表2  回火态和时效态P91和H-Si合金钢的析出相尺寸 (nm)
图9  回火态H-Si钢界面处M23C6的TEM像及其EDS面扫描和线扫描元素分析结果
图10  回火态P91钢界面处M23C6的形貌及其EDS面扫描元素分析结果
图11  时效态P91和H-Si钢室温冲击断口的SEM像
图12  时效态P91和H-Si钢冲击断口截面的SEM像
1 Bassini S, Cataldo S, Cristalli C, et al. Material performance in lead and lead-bismuth alloy [J]. Compr. Nucl. Mater., 2020, 4: 218
2 Cabet C, Dalle F, Gaganidze E, et al. Ferritic-martensitic steels for fission and fusion applications [J]. J. Nucl. Mater., 2019, 523: 510
doi: 10.1016/j.jnucmat.2019.05.058
3 Gong X, Short M P, Auger T, et al. Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooled reactors [J]. Prog. Mater. Sci., 2022, 126: 100920
4 Alemberti A. The lead fast reactor: An opportunity for the future? [J]. Engineering, 2016, 2: 59
5 Yang K, Yan W, Wang Z G, et al. Development of a novel structural material (SIMP steel) for nuclear equipment with balanced resistances to high temperature, radiation and liquid metal corrosion [J]. Acta Metall. Sin., 2016, 52: 1207
5 杨 柯, 严 伟, 王志光 等. 核用新型耐高温、抗辐照、耐液态金属腐蚀结构材料——SIMP钢的研究进展 [J]. 金属学报, 2016, 52: 1207
6 Martinelli L, Balbaud-Célérier F, Terlain A, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part I) [J]. Corros. Sci., 2008, 50: 2523
7 Martinelli L, Balbaud-Célérier F, Picard G, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part III) [J]. Corros. Sci., 2008, 50: 2549
8 Martinelli L, Balbaud-Célérier F, Terlain A, et al. Oxidation mechanism of an Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy at 470°C (Part II) [J]. Corros. Sci., 2008, 50: 2537
9 Wang J, Lu S P, Rong L J, et al. Effect of silicon on the oxidation resistance of 9wt.% Cr heat resistance steels in 550oC lead-bismuth eutectic [J]. Corros. Sci., 2016, 111: 13
10 Chen S H, Rong L J. Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel [J]. J. Nucl. Mater., 2015, 459: 13
11 Zhang Y Y, He H, Wang H, et al. Evolution of microstructure and mechanical properties of 9Cr ferrite/martensite steels with different Si content after long-term aging at 550oC [J]. J. Alloys Compd., 2021, 873: 159817
12 Zhou J, Qiu S Y, Qiu R S, et al. Effect of Si content on precipitation behavior of Laves phase and impact performance of 9%Cr ferritic martensitic steel [J]. Trans. Mater. Heat Treat., 2022, 43(5): 116
12 周 军, 邱绍宇, 邱日盛 等. Si含量对9%Cr铁素体马氏体钢Laves相析出行为和冲击性能的影响 [J]. 材料热处理学报, 2022, 43(5): 116
13 Ryu S H, Yu J. A new equation for the Cr equivalent in 9 to 12 pct Cr steels [J]. Metall. Mater. Trans., 1998, 26A: 1573
14 Liu Z, Liu Z D, Wang X T, et al. Investigation of the microstructure and strength in G115 steel with the different concentration of tungsten during creep test [J]. Mater. Charact., 2019, 149: 95
15 Tan L, Yang Y, Busby J T. Effects of alloying elements and thermomechanical treatment on 9Cr reduced activation ferritic-martensitic (RAFM) steels [J]. J. Nucl. Mater., 2013, 442: S13
16 Ye Z F, Wang P, Li D Z, et al. Effect of carbon and niobium on the microstructure and impact toughness of a high silicon 12% Cr ferritic/martensitic heat resistant steel [J]. Mater. Sci. Eng., 2014, A616: 12
17 Chen F X. Study on the microstructural evolution and strength degradation of 9% chromium ferritic/martensitic heat resistant steels [D]. Zibo: Shandong University of Technology, 2009
17 陈福霞. 9%Cr铁素体/马氏体耐热钢的组织演化和强度退化研究 [D]. 淄博: 山东理工大学, 2009
18 Zhang Y, Yu C, Zhou T, et al. Effects of Ti and a twice-quenching treatment on the microstructure and ductile brittle transition temperature of 9CrWVTiN steels [J]. Mater. Des., 2015, 88: 675
19 Yin H F, Yang G, Zhao J Q, et al. Mo-rich Laves phase in a 9.5Cr-1.5MoCoVNbNB heat-resistant steel during long-term aging at 620oC [J]. Mater. Charact., 2021, 182: 111588
20 Isik M I, Kostka A, Yardley V A, et al. The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12% Cr tempered martensite ferritic steels [J]. Acta Mater., 2015, 90: 94
21 Isik M I, Kostka A, Eggeler G. On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels [J]. Acta Mater., 2014, 81: 230
22 Wang X, Yu S M, Ren Y Y, et al. Laves phase evolution in P92 steel during ageing [J]. Acta Metall. Sin., 2014, 50: 1195
doi: 10.11900/0412.1961.2014.00101
22 王 学, 于淑敏, 任遥遥 等. P92钢时效的Laves相演化行为 [J]. 金属学报, 2014, 50: 1195
23 Aghajani A, Somsen C, Eggeler G. On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel [J]. Acta Mater., 2009, 57: 5093
24 Xue W Y, Zhou J H, Shen Y F, et al. Micromechanical behavior of a fine-grained China low activation martensitic (CLAM) steel [J]. J. Mater. Sci. Technol., 2019, 35: 1869
doi: doi.org/10.1016/j.jmst.2019.05.005
25 Xu Y T, Nie Y H, Wang M J, et al. The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging [J]. Acta Mater., 2017, 131: 110
26 Li J R, He T, Zhang P F, et al. Effect of large-size carbides on the anisotropy of mechanical properties in 11Cr-3Co-3W martensitic heat-resistant steel for turbine high temperature blades in ultra-supercritical power plants [J]. Mater. Charact., 2020, 159: 110025
27 Yan P, Liu Z D. Toughness evolution of 9Cr-3W-3Co martensitic heat resistant steel during long time aging [J]. Mater. Sci. Eng., 2016, A650: 290
28 Lee J S, Armaki H G, Maruyama K, et al. Causes of breakdown of creep strength in 9Cr-1.8W-0.5Mo-VNb steel [J]. Mater. Sci. Eng., 2006, A428: 270
[1] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
[2] 张星星, LUTZ Andreas, 甘为民, MAAWAD Emad, KRIELE Armin. 退火热处理对增材制造AlSi10Mg合金宏观和微观变形行为的影响[J]. 金属学报, 2024, 60(8): 1091-1099.
[3] 张冉, 朱士泽, 刘振宇, 柯于斌, 王东, 肖伯律, 马宗义. 时效温度对SiC/Al-Zn-Mg-Cu复合材料时效析出行为的影响[J]. 金属学报, 2024, 60(8): 1043-1054.
[4] 陈诚, 杨光昱, 金梦辉, 王强, 汤鑫, 程会民, 介万奇. 铸型正反转搅动对精密铸造K4169合金凝固组织和室温力学性能的影响[J]. 金属学报, 2024, 60(7): 926-936.
[5] 孟玉佳, 席通, 杨春光, 赵金龙, 张新蕊, 于英杰, 杨柯. Ga添加对304L不锈钢力学性能和抗菌性能的影响[J]. 金属学报, 2024, 60(7): 890-900.
[6] 许仁杰, 屠鑫, 胡斌, 罗海文. Cu-V双合金化3Mn钢的组织和力学性能[J]. 金属学报, 2024, 60(6): 817-825.
[7] 谢丽文, 张立龙, 刘艳艳, 张明阳, 王绍钢, 焦大, 刘增乾, 张哲峰. 不锈钢纤维增强镁基仿生复合材料制备与力学性能[J]. 金属学报, 2024, 60(6): 760-769.
[8] 汪建强, 刘威峰, 刘生, 徐斌, 孙明月, 李殿中. 700℃时效对9Cr ODS钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(5): 616-626.
[9] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[10] 王郑, 王振玉, 汪爱英, 杨巍, 柯培玲. 微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响[J]. 金属学报, 2024, 60(5): 691-698.
[11] 田滕, 查敏, 殷皓亮, 花珍铭, 贾海龙, 王慧远. 低温高应变量衬板控轧高固溶Al-Mg合金高强塑性与高热稳定性机制[J]. 金属学报, 2024, 60(4): 473-484.
[12] 张光莹, 李岩, 黄丽颖, 定巍. 连续屈服、高强屈比中锰钢的工艺设计与组织调控[J]. 金属学报, 2024, 60(4): 443-452.
[13] 江浩文, 彭伟, 范增为, 汪杨鑫, 刘腾轼, 董瀚. Ag对奥氏体不锈钢组织和力学性能的影响[J]. 金属学报, 2024, 60(4): 434-442.
[14] 杨杰, 黄森森, 尹慧, 翟瑞志, 马英杰, 向伟, 罗恒军, 雷家峰, 杨锐. 航空用TC21钛合金变截面模锻件的显微组织和力学性能不均匀性分析[J]. 金属学报, 2024, 60(3): 333-347.
[15] 胡宝佳, 郑沁园, 路轶, 贾春妮, 梁田, 郑成武, 李殿中. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 189-200.