Please wait a minute...
金属学报  2024, Vol. 60 Issue (9): 1213-1228    DOI: 10.11900/0412.1961.2022.00426
  研究论文 本期目录 | 过刊浏览 |
316L不锈钢表面激光熔化沉积CoCrNiCu中熵合金的界面相容性
于云鹤1, 谢勇1, 陈鹏1, 董浩凯2, 侯纪新1(), 夏志新1()
1.苏州大学 沙钢钢铁学院 苏州 215137
2.华南理工大学 机械与汽车工程学院 广州 510641
Interfacial Compatibility for Laser Melting Deposition of CoCrNiCu Medium-Entropy Alloy on 316L Austenitic Stainless Steel Surface
YU Yunhe1, XIE Yong1, CHEN Peng1, DONG Haokai2, HOU Jixin1(), XIA Zhixin1()
1.Shagang School of Iron and Steel, Soochow University, Suzhou 215137, China
2.School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
引用本文:

于云鹤, 谢勇, 陈鹏, 董浩凯, 侯纪新, 夏志新. 316L不锈钢表面激光熔化沉积CoCrNiCu中熵合金的界面相容性[J]. 金属学报, 2024, 60(9): 1213-1228.
Yunhe YU, Yong XIE, Peng CHEN, Haokai DONG, Jixin HOU, Zhixin XIA. Interfacial Compatibility for Laser Melting Deposition of CoCrNiCu Medium-Entropy Alloy on 316L Austenitic Stainless Steel Surface[J]. Acta Metall Sin, 2024, 60(9): 1213-1228.

全文: PDF(5354 KB)   HTML
摘要: 

异种材料界面相容性是制约结合强度的关键因素,然而其内在机制仍待完善。本工作开展了316L不锈钢表面激光熔化沉积CoCrNiCu中熵合金实验,借助SEM、STEM、EBSD、透射Kikuchi衍射(TKD)等手段对异种材料显微组织与界面特征进行表征,测试了异种材料界面力学性能,进而通过系统研究界面组织与晶体学相容性提出改善结合强度的方法。结果表明,CoCrNiCu中熵合金与316L不锈钢异种材料界面处形成了CoCrNiCuFe高熵合金全固溶过渡区,异种材料剪切强度可达324 MPa。在C元素界面配分引发奥氏体稳定性降低以及残余应力引发塑性变形的协同作用下,316L不锈钢靠近异种材料界面处的部分奥氏体晶粒发生应变诱导马氏体相变,这在促进相变诱导塑性(TRIP)效应的同时也会导致界面匹配程度降低。因此,对于物性差异较小的异种材料应保持相同晶体结构的单相匹配,通过提高界面晶体学相容性改善界面结合强度;对于物性差异较大的异种材料可借助TRIP效应设计双相结构以提高协调变形能力。

关键词 增材制造激光熔化沉积异种材料界面设计中熵合金不锈钢    
Abstract

Dissimilar materials can achieve multifunction and multiperformance coupling and have broad development prospects in areas, such as aerospace, energy, automotive, and biomedicine. The properties of dissimilar materials can be improved by enhancing the compatibility of the heterogeneous interface. Herein, a laser melting deposition experiment of CoCrNiCu medium-entropy alloy (MEA) on the surface of 316L stainless steel was carried out. The microstructure morphology and interface characteristics of the dissimilar materials were characterized using SEM, STEM, EBSD, and transmission Kikuchi diffraction (TKD). The interfacial mechanical properties of the dissimilar materials were tested. The methods for promoting the bonding strength of dissimilar materials were then proposed by systematically exploring the interfacial compatibility of the microstructure and crystallography. The results show that a total solution transition zone of CoCrNiCuFe, a high-entropy alloy, was formed at the interface between CoCrNiCu MEA and 316L stainless steel. The shear strength of the dissimilar material can reach 324 MPa. Through the synergistic effect of austenite stability reduction caused by C interfacial partitioning and the plastic deformation induced by residual stress, some austenite grains of 316L stainless steel near the interface of the dissimilar materials undergo strain-induced martensitic transformation. This can promote the transformation-induced plasticity (TRIP) effect to improve the strength and ductility of the dissimilar materials while reducing interface matching. Therefore, as for the dissimilar materials with small physical discrepancies, single-phase matching with the same crystal structure should be maintained to increase the interfacial bonding strength by improving the interfacial crystallography compatibility. The TRIP effect can be used to design a duplex structure to improve the process of coordinated deformation for dissimilar materials with large physical discrepancies.

Key wordsadditive manufacturing    laser melting deposition    dissimilar material    interface design    medium-entropy alloy    stainless steel
收稿日期: 2022-10-08     
ZTFLH:  TG113.12  
基金资助:国家自然科学基金项目(52071124,U2030102);先进材料教育部重点实验室开放课题项目(ADV22-12);江苏省卓越博士后计划项目
通讯作者: 夏志新,xiazhixin2000@163.com,主要从事异种金属材料增材制造研究
侯纪新,jxhou@foxmail.com,主要从事增材制造金属材料强韧化研究
Corresponding author: XIA Zhixin, professor, Tel: (0512) 67580785, E-mail: xiazhixin2000@163.com
HOU Jixin, associate professor, Tel: (0512) 67580785, E-mail: jxhou@foxmail.com
作者简介: 于云鹤,男,1994年生,博士
图1  异种材料激光熔化沉积加工示意图和样品宏观形貌
图2  CoCrNiCu 中熵合金(MEA)/316L不锈钢异种材料的SEM像
MaterialPositionCoCrNiCuFeMoMnSiC
CoCrNiCu MEAP122.720.925.714.816.0----
P223.321.526.112.616.5----
Transition zoneP320.520.723.610.624.6----
P421.120.823.510.524.1----
316L stainless steelP50.917.310.70.6Bal.1.901.070.390.03*
P60.917.510.30.6Bal.2.001.020.440.03*
CoCrNiCu MEAOriginal25.322.325.227.2-----
316L stainless steelOriginal-16.510.2-Bal.2.061.220.530.03
表1  CoCrNiCu MEA与316L不锈钢的初始成分以及CoCrNiCu MEA/316L不锈钢异种材料界面不同位置化学成分的EDS测定结果 (mass fraction / %)
图3  CoCrNiCu MEA/316L不锈钢异种材料的STEM分析
图4  CoCrNiCu MEA/316L不锈钢异种材料的EBSD分析
图5  CoCrNiCu MEA/316L不锈钢异种材料显微组织的TEM像与界面元素配分
图6  CoCrNiCu MEA/316L不锈钢异种材料的显微硬度、强度和断口形貌
图7  CoCrNiCu MEA/316L不锈钢异种材料的固溶体判据计算结果
MaterialPositionNieqCreqPM
316LOriginal19.412.0A + F
316LP519.813.1A + F
316LP620.312.6A + F
316L, 0.005%CP512.119.2A + F
316L, 0.01%CP512.319.2A + F
316L, 0.02%CP512.719.2A + F
316L, 0.05%CP513.119.2A + F
表2  基于Schaeffler图计算的Ni当量(Nieq)、Cr当量(Creq)以及显微组织预测结果
图8  置换型元素与间隙型元素C的界面配分对316L不锈钢Schaeffler图显微组织的影响
图9  316L不锈钢基体上单层单道激光熔化沉积CoCrNiCu MEA的有限元建模及网格划分情况,表面激光熔化沉积试样界面附近温度场与残余热应力的有限元模拟结果
图10  垂直于CoCrNiCu MEA/316L不锈钢异种材料界面方向残余热应力的演变
图11  CoCrNiCu MEA/316L不锈钢异种材料界面匹配机制的TEM分析
图12  316L不锈钢马氏体转变组织的透射Kikuchi衍射(TKD)分析
1 Wang D, Deng G W, Yang Y Q, et al. Research progress on additive manufacturing of metallic heterogeneous materials [J]. J. Mech. Eng., 2021, 57(1): 186
doi: 10.3901/JME.2021.01.186
1 王 迪, 邓国威, 杨永强 等. 金属异质材料增材制造研究进展 [J]. 机械工程学报, 2021, 57(1): 186
2 Li W, Jia X Q, Jin X J. Research progress of microstructure control and strengthening mechanism of QPT process advanced steel with high strength and toughness [J]. Acta Metall. Sin., 2022, 58: 444
doi: 10.11900/0412.1961.2021.00524
2 李 伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展 [J]. 金属学报, 2022, 58: 444
3 Wang C Y, Chang Y, Zhou F L, et al. M3 microstructure control theory and technology of the third-generation automotive steels with high strength and high ductility [J]. Acta Metall. Sin., 2020, 56: 400
3 王存宇, 常 颖, 周峰峦 等. 高强度高塑性第三代汽车钢的M3组织调控理论与技术 [J]. 金属学报, 2020, 56: 400
doi: 10.11900/0412.1961.2019.00371
4 Vaezi M, Chianrabutra S, Mellor B, et al. Multiple material additive manufacturing- Part 1: A review [J]. Virt. Phys. Prototyp., 2013, 8: 19
5 Ming H L, Zhang Z M, Wang J Q, et al. Microstructure and local properties of a domestic safe-end dissimilar metal weld joint by using hot-wire GTAW [J]. Acta Metall. Sin., 2017, 53: 57
doi: 10.11900/0412.1961.2016.00135
5 明洪亮, 张志明, 王俭秋 等. 国产核电安全端异种金属焊接件的微观结构及局部性能研究 [J]. 金属学报, 2017, 53: 13
6 Li B, Fu J Z, Feng J W, et al. Review of heterogeneous material objects modeling in additive manufacturing [J]. Vis. Comput. Ind. Biomed. Art., 2020, 3: 6
7 Garcia D, Wu Z L, Kim J Y, et al. Heterogeneous materials design in additive manufacturing: Model calibration and uncertainty-guided model selection [J]. Addit. Manuf., 2019, 27: 61
doi: 10.1016/j.addma.2019.02.014
8 Wang J T, Fu X, Zhang L B, et al. A short review on laser welding/brazing of aluminum alloy to steel [J]. Int. J. Adv. Manuf. Technol., 2021, 112: 2399
9 Yang J, Oliveira J P, Li Y L, et al. Laser techniques for dissimilar joining of aluminum alloys to steels: A critical review [J]. J. Mater. Process. Technol., 2022, 301: 117443
10 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
11 George E P, Curtin W A, Tasan C C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms [J]. Acta Mater., 2020, 188: 435
12 Cantor B. Multicomponent high-entropy Cantor alloys [J]. Prog. Mater. Sci., 2021, 120: 100754
13 Zhang Y L, Jiang X S, Fang Y, et al. Research and development of welding methods and welding mechanism of high-entropy alloys: A review [J]. Mater. Today Commun., 2021, 28: 102503
14 Li J, Zhao H L, Zhou N, et al. Diffusion bonding of CoCrFeNiCu high-entropy alloy to 304 stainless steel [J]. Acta Metall. Sin., 2021, 57: 1567
doi: 10.11900/0412.1961.2021.00031
14 李 娟, 赵宏龙, 周 念 等. CoCrFeNiCu高熵合金与304不锈钢真空扩散焊 [J]. 金属学报, 2021, 57: 1567
15 Sokkalingam R, Muthupandi V, Sivaprasad K, et al. Dissimilar welding of Al0.1CoCrFeNi high-entropy alloy and AISI304 stainless steel [J]. J. Mater. Res., 2019, 34: 2683
16 Kim D G, Jo Y H, Song T, et al. Excellent strength-ductility combination of multi-layered sheets composed of high-strength V10Cr10Fe50Co30 high entropy alloy and 304 austenitic stainless steel [J]. Mater. Sci. Eng., 2021, A823: 141727
17 Oliveira J P, Shen J J, Zeng Z, et al. Dissimilar laser welding of a CoCrFeMnNi high entropy alloy to 316 stainless steel [J]. Scr. Mater., 2022, 206: 114219
18 Oliveira J P, Shamsolhodaei A, Shen J J, et al. Improving the ductility in laser welded joints of CoCrFeMnNi high entropy alloy to 316 stainless steel [J]. Mater. Des., 2022, 219: 110717
19 Adomako N K, Shin G, Park N, et al. Laser dissimilar welding of CoCrFeMnNi-high entropy alloy and duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 85: 95
doi: 10.1016/j.jmst.2021.02.003
20 Yan S H, Zhou H Y, Zhu Z Y, et al. High strength-ductility synergy in a laser welded dissimilar joint of CrCoNi medium-entropy alloy and stainless steel [J]. Mater. Sci. Eng., 2022, A840: 142854
21 Fang Y Z, Dai G Q, Guo Y H, et al. Effect of laser oscillation on the microstructure and mechanical properties of laser melting deposition titanium alloys [J]. Acta Metall. Sin., 2023, 59: 136
doi: 10.11900/0412.1961.2021.00600
21 方远志, 戴国庆, 郭艳华 等. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59: 136
doi: 10.11900/0412.1961.2021.00600
22 Kok Y, Tan X P, Wang P, et al. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review [J]. Mater. Des., 2018, 139: 565
23 Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
24 Chen P, Chen L, Xu J C, et al. Formation mechanism of pearlite during thermal cycling in U75V steel rail repaired by laser directed energy deposition [J]. J. Laser Appl., 2021, 33: 032017
25 Xie Y, Xia Z X, Hou J X, et al. Effect of Cu-rich phase precipitation on the microstructure and mechanical properties of CoCrNiCu x medium-entropy alloys prepared via laser directed energy deposition [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1591
26 Xu Y T, Nie Y H, Wang M J, et al. The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging [J]. Acta Mater., 2017, 131: 110
27 Agrawal P, Gupta S, Shukla S, et al. Role of Cu addition in enhancing strength-ductility synergy in transforming high entropy alloy [J]. Mater. Des., 2022, 215: 110487
28 Stoller R E, Zinkle S J. On the relationship between uniaxial yield strength and resolved shear stress in polycrystalline materials [J]. J. Nucl. Mater., 2000, 283-287: 349
29 Yang Y, Hu J, Liu X Y, et al. Post treatment of an additively manufactured composite consisting of 304L stainless steel and CoCrFe-MnNi high-entropy alloy [J]. Mater. Sci. Eng., 2022, A831: 142104
30 Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys [J]. Mater. Chem. Phys., 2012, 132: 233
31 Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
32 Li Z T, Zhang W D, Wu Z G. Nature of CoCrFeMnNi/Fe and CoCrFeMnNi/Al solid/solid interface [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1483
33 Liu D J, Wang W X, Zha X A, et al. Effects of groove on the microstructure and mechanical properties of dissimilar steel welded joints by using high-entropy filler metals [J]. J. Mater. Res. Technol., 2021, 13: 173
34 Chandrakant, Reddy N S, Panigrahi B B. Electro spark coating of AlCoCrFeNi high entropy alloy on AISI410 stainless steel [J]. Mater. Lett., 2021, 304: 130580
35 Masumura T, Nakada N, Tsuchiyama T, et al. The difference in thermal and mechanical stabilities of austenite between carbon- and nitrogen-added metastable austenitic stainless steels [J]. Acta Mater., 2015, 84: 330
36 Olson G B, Cohen M. A mechanism for the strain-induced nucleation of martensitic transformations [J]. J. Less Common Met., 1972, 28: 107
37 Lee S G, Jo Y H, Song T, et al. Strength-ductility enhancement in multi-layered sheet with high-entropy alloy and high-Mn twinning-induced plasticity steel [J]. Mater. Sci. Eng., 2021, A822: 141670
38 Zhang S Q, Wang Q, Yang R, et al. Composition equivalents of stainless steels understood via gamma stabilizing efficiency [J]. Sci. Rep., 2021, 11: 5423
doi: 10.1038/s41598-021-84917-z pmid: 33686112
39 Eichelman G, Hull F. The effect of composition on the temperature of spontaneous transformation of austenite to martensite in 18-8-type stainless steel [J]. Trans. Am. Soc. Met., 1953, 45: 77
40 da Rocha M R, de Oliveira C A S. Evaluation of the martensitic transformations in austenitic stainless steels [J]. Mater. Sci. Eng., 2009, A517: 281
41 Angel T. Formation of martensite in austenitic stainless steels effects of deformation, temperature, and composition [J]. J. Iron Steel Inst., 1954, 177: 165
42 Nohara K, Ono Y, Ohashi N. Composition and grain size dependencies of strain-induced martensitic transformation in metastable austenitic stainless steels [J]. Tetsu Hagané, 1977, 63: 772
42 野原 清彦, 小野 寛, 大橋 延夫. 準安定オーステナイトステンレス鋼における加工誘起マルテンサイト変態の組成および結晶粒度依存性 [J]. 鉄と鋼, 1997, 63: 772
43 Hedayati A, Najafizadeh A, Kermanpur A, et al. The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel [J]. J. Mater. Process. Technol., 2010, 210: 1017
44 Mahmoudiniya M, Kheirandish S, Asadiasadabad M. The effect of cold rolling on microstructure and mechanical properties of a new Cr-Mn austenitic stainless steel in comparison with AISI 316 stainless steel [J]. Trans. Indian Inst. Met., 2017, 70: 1251
45 Solomon N, Solomon I. Deformation induced martensite in AISI 316 stainless steel [J]. Rev. Metal., 2010, 46: 121
46 Sohrabi M J, Naghizadeh M, Mirzadeh H. Deformation-induced martensite in austenitic stainless steels: A review [J]. Arch. Civil Mech. Eng., 2020, 20: 124
47 Zhao J Q, Tian H, Wang Z, et al. FCC-to-HCP phase transformation in CoCrNi x medium-entropy alloys [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1151
48 Laplanche G, Gadaud P, Bärsch C, et al. Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy [J]. J. Alloys Compd., 2018, 746: 244
49 Tian Y, Gorbatov O I, Borgenstam A, et al. Deformation microstructure and deformation-induced martensite in austenitic Fe-Cr-Ni alloys depending on stacking fault energy [J]. Metall. Mater. Trans., 2017, 48A: 1
50 Das A, Sivaprasad S, Ghosh M, et al. Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel [J]. Mater. Sci. Eng., 2008, A486: 283
51 Pierce D T, Jiménez J A, Bentley J, et al. The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation [J]. Acta Mater., 2015, 100: 178
52 Song H, Yang J, Jo Y H, et al. Excellent combination of cryogenic-temperature strength and ductility of high-entropy-alloy-cored multi-layered sheet [J]. J. Alloys Compd., 2019, 797: 465
53 Lee Y K, Lee S J, Han J. Critical assessment 19: Stacking fault energies of austenitic steels [J]. Mater. Sci. Technol., 2016, 32: 1
54 Tian Y, Borgenstam A, Hedström P. Comparing the deformation-induced martensitic transformation with the athermal martensitic transformation in Fe-Cr-Ni alloys [J]. J. Alloys Compd., 2018, 766: 131
55 Wang J L, Huang M H, Hu J, et al. EBSD investigation of the crystallographic features of deformation-induced martensite in stainless steel [J]. J. Mater. Sci. Technol., 2021, 69: 148
doi: 10.1016/j.jmst.2020.08.023
[1] 张星星, LUTZ Andreas, 甘为民, MAAWAD Emad, KRIELE Armin. 退火热处理对增材制造AlSi10Mg合金宏观和微观变形行为的影响[J]. 金属学报, 2024, 60(8): 1091-1099.
[2] 孟玉佳, 席通, 杨春光, 赵金龙, 张新蕊, 于英杰, 杨柯. Ga添加对304L不锈钢力学性能和抗菌性能的影响[J]. 金属学报, 2024, 60(7): 890-900.
[3] 杨瑞泽, 翟汝宗, 任少飞, 孙明月, 徐斌, 乔岩欣, 杨兰兰. 1Cr22Mn16N高氮奥氏体不锈钢塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2024, 60(7): 915-925.
[4] 谢丽文, 张立龙, 刘艳艳, 张明阳, 王绍钢, 焦大, 刘增乾, 张哲峰. 不锈钢纤维增强镁基仿生复合材料制备与力学性能[J]. 金属学报, 2024, 60(6): 760-769.
[5] 黎康杰, 孙泽羽, 何蓓, 田象军. 基于熔池原位冶金的电弧增材制造Al-Cu-Li合金显微组织与硬度[J]. 金属学报, 2024, 60(5): 661-669.
[6] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[7] 刘壮壮, 丁明路, 谢建新. 金属3D打印数字化制造研究进展[J]. 金属学报, 2024, 60(5): 569-584.
[8] 江浩文, 彭伟, 范增为, 汪杨鑫, 刘腾轼, 董瀚. Ag对奥氏体不锈钢组织和力学性能的影响[J]. 金属学报, 2024, 60(4): 434-442.
[9] 孙徕博, 黄陆军, 黄瑞生, 徐锴, 武鹏博, 龙伟民, 姜风春, 方乃文. 超声冲击对增材制造组织改善及强化机理影响的研究进展[J]. 金属学报, 2024, 60(3): 273-286.
[10] 陈胜虎, 王琪玉, 姜海昌, 戎利建. δ-铁素体对钠冷快堆用316KD奥氏体不锈钢热变形行为和动态再结晶的影响[J]. 金属学报, 2024, 60(3): 367-376.
[11] 张楠, 张海武, 王淼辉. 微米级选区激光熔化316L不锈钢的拉伸力学性能[J]. 金属学报, 2024, 60(2): 211-219.
[12] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[13] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[14] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[15] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.