Please wait a minute...
金属学报  2024, Vol. 60 Issue (8): 1119-1129    DOI: 10.11900/0412.1961.2024.00057
  研究论文 本期目录 | 过刊浏览 |
Pd-Si金属玻璃液-液相变过程的短程-中程序结构演变规律
董蔚霞1,2, 姚忠正1, 刘思楠1, 陈国星1, 王循理2, 吴桢舵3,4(), 兰司1()
1 南京理工大学 材料科学与工程学院/格莱特研究院 南京 210094
2 香港城市大学 物理系 香港 999077
3 香港城市大学(东莞) 中子散射应用物理研究中心 东莞 523000
4 香港城市大学深圳研究院 中子散射研究中心 深圳 518057
Evolution of Short-to-Medium Range Orders During the Liquid-Liquid Phase Transition of a Pd-Si Metallic Glass
DONG Weixia1,2, YAO Zhongzheng1, LIU Sinan1, CHEN Guoxing1, WANG Xun-Li2, WU Zhenduo3,4(), LAN Si1()
1 Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2 Department of Physics, City University of Hong Kong, Hong Kong 999077, China
3 Center for Neutron Scattering and Applied Physics, City University of Hong Kong (Dongguan), Dongguan 523000, China
4 Neutron Scattering Research Center, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
引用本文:

董蔚霞, 姚忠正, 刘思楠, 陈国星, 王循理, 吴桢舵, 兰司. Pd-Si金属玻璃液-液相变过程的短程-中程序结构演变规律[J]. 金属学报, 2024, 60(8): 1119-1129.
Weixia DONG, Zhongzheng YAO, Sinan LIU, Guoxing CHEN, Xun-Li WANG, Zhenduo WU, Si LAN. Evolution of Short-to-Medium Range Orders During the Liquid-Liquid Phase Transition of a Pd-Si Metallic Glass[J]. Acta Metall Sin, 2024, 60(8): 1119-1129.

全文: PDF(3047 KB)   HTML
摘要: 

液-液相变(liquid-liquid phase transition,LLPT)通常发生在多组元金属玻璃超过冷液相区。由于二元合金体系玻璃形成能力有限,LLPT易受结晶干扰,所以二元金属玻璃LLPT的研究鲜有报道。为了揭示二元金属玻璃的液-液相变机制,本工作通过原位同步辐射X射线和透射电子显微镜(TEM)研究了Pd82Si18金属玻璃在超过冷液相区的相变问题。研究发现,在等温退火的初始阶段发生了LLPT,散射结果表明LLPT会降低过冷液体密度,而且使原子结构的关联长度减小。对分布函数结果显示在LLPT过程中,中程尺度上类似于fcc结构的原子-原子连接得到了增强,但短程尺度结构则变得更加无序。TEM结果进一步表明,在LLPT过程中存在纳米尺度的结构不均匀性,印证了LLPT过程的两相共存状态。研究结果为二元合金超过冷液体发生LLPT提供了新的证据,也为揭示金属玻璃中局域结构演变和相变过程提供了新模型。

关键词 金属玻璃超过冷液相区液-液相变结晶同步辐射X射线散射透射电子显微镜    
Abstract

Liquid-liquid phase transition (LLPT) is a universal phenomenon that occurs in different types of liquids. Understanding its mechanism can help solve the long-standing mystery of liquid and amorphous structures. In metallic liquids, LLPT has been widely reported to be observed in the supercooled liquid region in multicomponent alloy systems. However, few observations of LLPT were reported in binary metallic systems, mainly due to the poor thermal stability of these systems in the supercooled liquid region. Herein, the phase transition of Pd82Si18 metallic glass in its supercooled liquid region was studied by in situ synchrotron X-ray scattering and transmission electron microscopy (TEM). The in situ synchrotron diffraction data revealed the precipitation of fcc crystals after 200 s of annealing at 638 K. Before 200 s, the position of the first broad diffraction peak, Q1, shifted toward lower momentum transfer (Q) values and the peak broadened, indicating the occurrence of LLPT at the initial stage of annealing. The structural changes occurring during LLPT were analyzed based on the pair distribution function; the changes were characterized by a transition from short- to medium-range orders as per the reduced atomic pair distribution function curve G(r). The intensity of peaks up to the fourth nearest neighbor shell in the G(r)curve exhibited different variations trends during LLPT. The peaks were classified into two groups: those indicating an fcc structure and those indicating a six-membered tricapped trigonal prism (6M-TTP; a typical medium-range order observed recently in Pd-based metallic glasses) structure. The number of peaks associated with the 6M-TTP structure gradually decreased during annealing. In contrast, the number of peaks associated with the fcc structure gradually increased at medium-range scale and decreased at short-range scale before 200 s. An analysis of the G(r) peaks indicated that LLPT is characterized by a transition from the 6M-TTP-type atomic cluster to a new type of cluster. This new type of cluster shows an atomic correlation similar to that observed in the fcc structure in the medium-range scale; however, its short-range order deteriorates. Further, high-angle annular dark field scanning TEM images revealed nanoscale structural heterogeneities during LLPT. The SAED and HRTEM results confirmed that the sample annealed for a short duration (i.e., before 200 s) with a nanoscale heterogeneous structure is amorphous, thus demonstrating the coexistence of two liquid phases. Notably, one of the two liquid phases is prone to crystallization under ion milling, thereby forming a crystal-amorphous network structure. The crystals formed due to ion milling exhibit the fcc structure and have the same crystal orientation. This research provides new evidence to unravel the LLPT mechanism in supercooled metallic liquids. Further, it presents a new model for explaining the complex structure and phase transition in metallic liquids.

Key wordsmetallic glass    supercooled liquid    liquid-liquid phase transition    crystallization    synchrotron X-ray scattering    transmission electron microscopy
收稿日期: 2024-02-29     
ZTFLH:  TG 111  
基金资助:国家重点研发计划青年科学家项目(2021YFB3802800);国家自然科学基金项目(52222104);国家自然科学基金项目(52201190);国家自然科学基金委员会及研究资助局联合科研资助基金项目(N_CityU173/22);国家自然科学基金国际(地区)合作与交流项目(12261160364);松山湖材料实验室开放研究基金项目(2022SLABFN19);粤港澳中子散射科学技术联合实验室开放课题基金项目
通讯作者: 吴桢舵,zd.wu@cityu-dg.edu.cn,主要从事非晶合金及同步辐射、中子散射对复杂材料结构解析的研究兰 司,lansi@njust.edu.cn,主要从事非晶合金与高熵合金结构、相变、同步辐射及中子散射相关研究
Corresponding author: WU Zhenduo, professor, Tel: (0769)26622690, E-mail: zd.wu@cityu-dg.edu.cnLAN Si, professor, Tel: (025)84315765, E-mail: lansi@njust.edu.cn
作者简介: 董蔚霞,女,1993年生,博士生
图1  Pd82Si18金属玻璃在超过冷液相区等温退火过程中的同步辐射X射线散射结构因子(S(Q))及结构因子差分(ΔS(Q))图谱
图2  Pd82Si18金属玻璃在超过冷液相区等温退火过程,S(Q)曲线上不同结晶峰积分强度的演变分析图
图3  Pd82Si18金属玻璃在超过冷液相区等温退火过程中第一衍射峰Q1峰位与峰宽演变图
图4  Pd82Si18金属玻璃在超过冷液相区等温退火过程中的约化对分布函数(PDF)图谱(G(r))及差分图谱(ΔG(r))
图5  约化对分布函数G(r)上属于非晶结构的特征峰(即退火前超过冷液体中已经存在的特征原子对)的积分强度演变图
图6  约化对分布函数G(r)上属于晶体结构的特征峰(即随着结晶过程新产生的特征原子对)的积分强度演变图
Peak

Position

nm

Cluster structuret ≤ 200 st > 200 s
r10.278F + T
r210.406F + T
r220.486F + T
r230.547T
r310.638F
r320.702T
r330.742F + T
r340.846F
r410.938T
r420.101F
表1  约化对分布函数中不同峰的积分强度在结晶前后的变化趋势
图7  Pd82Si18金属玻璃的高角环形暗场-扫描透射电镜(HAADF-STEM)像、TEM明场像及HRTEM像
图8  不同退火时间对应的径向分布函数T(r)第一壳层与对分布函数g(r)第二壳层Gaussian拟合分布图
图9  Pd82Si18样品经离子轰击后的TEM暗场像和SAED花样,及Pd82Si18样品663 K退火结晶后的SEM像和HAADF-STEM像
1 Tanaka H. General view of a liquid-liquid phase transition [J]. Phys. Rev., 2000, 62E: 6968
2 Harrington S, Zhang R, Poole P H, et al. Liquid-liquid phase transition: Evidence from simulations [J]. Phys. Rev. Lett., 1997, 78: 2409
3 Kurita R, Tanaka H. On the abundance and general nature of the liquid-liquid phase transition in molecular systems [J]. J. Phys. Condens. Matter, 2005, 17: L293
4 Zalden P, Quirin F, Schumacher M, et al. Femtosecond X-ray diffraction reveals a liquid-liquid phase transition in phase-change materials [J]. Science, 2019, 364: 1062
doi: 10.1126/science.aaw1773 pmid: 31197008
5 Lan S, Wu Z D, Wei X Y, et al. Structure origin of a transition of classic-to-avalanche nucleation in Zr-Cu-Al bulk metallic glasses [J]. Acta Mater., 2018, 149: 108
6 Gallo P, Bachler J, Bove L E, et al. Advances in the study of supercooled water [J]. Eur. Phys. J., 2021, 44E: 143
7 Wilding M C, Wilson M, McMillan P F. Structural studies and polymorphism in amorphous solids and liquids at high pressure [J]. Chem. Soc. Rev., 2006, 35: 964
pmid: 17003901
8 Boates B, Bonev S A. First-order liquid-liquid phase transition in compressed nitrogen [J]. Phys. Rev. Lett., 2009, 102: 015701
9 Mukherjee G D, Boehler R. High-pressure melting curve of nitrogen and the liquid-liquid phase transition [J]. Phys. Rev. Lett., 2007, 99: 225701
10 Mishima O, Calvert L D, Whalley E. An apparently first-order transition between two amorphous phases of ice induced by pressure [J]. Nature, 1985, 314: 76
11 Mishima O, Takemura K, Aoki K. Visual observations of the amorphous-amorphous transition in H2O under pressure [J]. Science, 1991, 254: 406
pmid: 17742228
12 Brazhkin V V, Popova S V, Voloshin R N. High-pressure transformations in simple melts [J]. High Pressure Res., 1997, 15: 267
13 Tamblyn I, Bonev S A. Structure and phase boundaries of compressed liquid hydrogen [J]. Phys. Rev. Lett., 2010, 104: 065702
14 Kim K H, Amann-Winkel K, Giovambattista N, et al. Experimental observation of the liquid-liquid transition in bulk supercooled water under pressure [J]. Science, 2020, 370: 978
doi: 10.1126/science.abb9385 pmid: 33214280
15 Henry L, Mezouar M, Garbarino G, et al. Liquid-liquid transition and critical point in sulfur [J]. Nature, 2020, 584: 382
16 Yang Z Q, Xu J X, Zhao G, et al. Ab initio investigation of the first-order liquid-liquid phase transition in molten sulfur [J]. Phys. Rev., 2024, 109B: 014209
17 Yao B, Paluch M, Wojnarowska Z. Effect of bulky anions on the liquid-liquid phase transition in phosphonium ionic liquids: Ambient and high-pressure dielectric studies [J]. Sci. Rep., 2023, 13: 3040
doi: 10.1038/s41598-023-29518-8 pmid: 36810358
18 Yao B B, Paluch M, Dulski M, et al. Tailoring phosphonium ionic liquids for a liquid-liquid phase transition [J]. J. Phys. Chem. Lett., 2023, 14: 2958
doi: 10.1021/acs.jpclett.3c00099 pmid: 36939303
19 Zhou C, Hu L N, Sun Q J, et al. Indication of liquid-liquid phase transition in CuZr-based melts [J]. Appl. Phys. Lett., 2013, 103: 171904
20 Ge J C, He H Y, Zhou J, et al. In-situ scattering study of a liquid-liquid phase transition in Fe-B-Nb-Y supercooled liquids and its correlation with glass-forming ability [J]. J. Alloys Compd., 2019, 787: 831
21 Dong W X, Wu Z D, Ge J C, et al. In situ neutron scattering studies of a liquid-liquid phase transition in the supercooled liquid of a Zr-Cu-Al-Ag glass-forming alloy [J]. Appl. Phys. Lett., 2021, 118: 191901
22 Dong W X, Ge J C, Ke Y B, et al. In-situ observation of an unusual phase transformation pathway with Guinier-Preston zone-like precipitates in Zr-based bulk metallic glasses [J]. J. Alloys Compd., 2020, 819: 153049
23 Lan S, Ren Y, Wei X Y, et al. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses [J]. Nat. Commun., 2017, 8: 14679
doi: 10.1038/ncomms14679 pmid: 28303882
24 Lan S, Blodgett M, Kelton K F, et al. Structural crossover in a supercooled metallic liquid and the link to a liquid-to-liquid phase transition [J]. Appl. Phys. Lett., 2016, 108: 211907
25 Küchemann S, Samwer K. Ultrafast heating of metallic glasses reveals disordering of the amorphous structure [J]. Acta Mater., 2016, 104: 119
26 Hammersley A P. FIT2D: A multi-purpose data reduction, analysis and visualization program [J]. J. Appl. Cryst., 2016, 49: 646
27 Qiu X, Thompson J W, Billinge S J L. PDFgetX2: A GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data [J]. J. Appl. Cryst., 2004, 37: 678
28 Koza M M, Schober H, Fischer H E, et al. Kinetics of the high- to low-density amorphous water transition [J]. J. Phys. Condens. Matter 2003, 15: 321
29 Price D L, Moss S C, Reijers R, et al. Intermediate-range order in glasses and liquids [J]. J. Phys. Condens. Matter 1989, 1: 1005
30 Sampath S, Benmore C J, Lantzky K M, et al. Intermediate-range order in permanently densified GeO2 glass [J]. Phys. Rev. Lett., 2003, 90: 115502
31 Ge J C, Luo P, Wu Z D, et al. Correlations of multiscale structural evolution and homogeneous flows in metallic glass ribbons [J]. Mater. Res. Lett., 2023, 11: 547
32 Egami T, Billinge S J L. Underneath the Bragg Peaks: Structural Analysis of Complex Materials [M]. 2nd Ed., San Diego, the USA: Pergamon, 2012: 1
33 Klug H P, Alexander L E. X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials [M]. 2nd Ed., Hoboken: Wiley, 1974: 1
34 Gaskell P H. Local and medium range structures in amorphous alloys [J]. J. Non-Cryst. Solids, 1985, 75: 329
35 Lan S, Zhu L, Wu Z D, et al. A medium-range structure motif linking amorphous and crystalline states [J]. Nat. Mater., 2021, 20: 1347
doi: 10.1038/s41563-021-01011-5 pmid: 34017117
36 Masumoto T, Maddin R. The mechanical properties of palladium 20 a/o silicon alloy quenched from the liquid state [J]. Acta Metall., 1971, 19: 725
37 Ma D, Stoica A D, Yang L, et al. Nearest-neighbor coordination and chemical ordering in multicomponent bulk metallic glasses [J]. Appl. Phys. Lett., 2007, 90: 211908
38 Ding J, Ma E, Asta M, et al. Second-nearest-neighbor correlations from connection of atomic packing motifs in metallic glasses and liquids [J]. Sci. Rep., 2015, 5: 17429
doi: 10.1038/srep17429 pmid: 26616762
39 Ohkubo T, Hirotsu Y. Electron diffraction and high-resolution electron microscopy study of an amorphous Pd82Si18 alloy with nanoscale phase separation [J]. Phys. Rev., 2003, 67B: 094201
40 Bussey J M, Weber M H, Smith-Gray N J, et al. Examining phase separation and crystallization in glasses with X-ray nano-computed tomography [J]. J. Non-Cryst. Solids, 2023, 600: 121987
41 Stoica M, Sarac B, Spieckermann F, et al. X-ray diffraction computed nanotomography applied to solve the structure of hierarchically phase-separated metallic glass [J]. ACS Nano, 2021, 15: 2386
doi: 10.1021/acsnano.0c04851 pmid: 33512138
42 Zhou Q, Han W C, Luo D W, et al. Mechanical and tribological properties of Zr-Cu-Ni-Al bulk metallic glasses with dual-phase structure [J]. Wear, 2021, 474-475: 203880
43 Kumar G, Nagahama D, Ohnuma M, et al. Structural evolution in the supercooled liquid of Zr36Ti24Be40 metallic glass [J]. Scr. Mater., 2006, 54: 801
44 Zheng H J, Lv Y M, Sun Q J, et al. Thermodynamic evidence for cluster ordering in Cu46Zr42Al7Y5 ribbons during glass transition [J]. Sci. Bull., 2016, 61: 706
45 Marcus M A. Phase separation and crystallization in amorphous Pd-Si-Sb [J]. J. Non-Cryst. Solids, 1979, 30: 317
46 Liu S N, Wang L F, Ge J C, et al. Deformation-enhanced hierarchical multiscale structure heterogeneity in a Pd-Si bulk metallic glass [J]. Acta Mater., 2020, 200: 42
47 Kim D H, Kim W T, Park E S, et al. Phase separation in metallic glasses [J]. Prog. Mater. Sci., 2013, 58: 1103
[1] 杨瑞泽, 翟汝宗, 任少飞, 孙明月, 徐斌, 乔岩欣, 杨兰兰. 1Cr22Mn16N高氮奥氏体不锈钢塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2024, 60(7): 915-925.
[2] 江浩文, 彭伟, 范增为, 汪杨鑫, 刘腾轼, 董瀚. Ag对奥氏体不锈钢组织和力学性能的影响[J]. 金属学报, 2024, 60(4): 434-442.
[3] 田滕, 查敏, 殷皓亮, 花珍铭, 贾海龙, 王慧远. 低温高应变量衬板控轧高固溶Al-Mg合金高强塑性与高热稳定性机制[J]. 金属学报, 2024, 60(4): 473-484.
[4] 陈胜虎, 王琪玉, 姜海昌, 戎利建. δ-铁素体对钠冷快堆用316KD奥氏体不锈钢热变形行为和动态再结晶的影响[J]. 金属学报, 2024, 60(3): 367-376.
[5] 胡宝佳, 郑沁园, 路轶, 贾春妮, 梁田, 郑成武, 李殿中. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 189-200.
[6] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[7] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[10] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[11] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[12] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[13] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[14] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[15] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.