|
|
Pd-Si金属玻璃液-液相变过程的短程-中程序结构演变规律 |
董蔚霞1,2, 姚忠正1, 刘思楠1, 陈国星1, 王循理2, 吴桢舵3,4( ), 兰司1( ) |
1 南京理工大学 材料科学与工程学院/格莱特研究院 南京 210094 2 香港城市大学 物理系 香港 999077 3 香港城市大学(东莞) 中子散射应用物理研究中心 东莞 523000 4 香港城市大学深圳研究院 中子散射研究中心 深圳 518057 |
|
Evolution of Short-to-Medium Range Orders During the Liquid-Liquid Phase Transition of a Pd-Si Metallic Glass |
DONG Weixia1,2, YAO Zhongzheng1, LIU Sinan1, CHEN Guoxing1, WANG Xun-Li2, WU Zhenduo3,4( ), LAN Si1( ) |
1 Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China 2 Department of Physics, City University of Hong Kong, Hong Kong 999077, China 3 Center for Neutron Scattering and Applied Physics, City University of Hong Kong (Dongguan), Dongguan 523000, China 4 Neutron Scattering Research Center, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China |
引用本文:
董蔚霞, 姚忠正, 刘思楠, 陈国星, 王循理, 吴桢舵, 兰司. Pd-Si金属玻璃液-液相变过程的短程-中程序结构演变规律[J]. 金属学报, 2024, 60(8): 1119-1129.
Weixia DONG,
Zhongzheng YAO,
Sinan LIU,
Guoxing CHEN,
Xun-Li WANG,
Zhenduo WU,
Si LAN.
Evolution of Short-to-Medium Range Orders During the Liquid-Liquid Phase Transition of a Pd-Si Metallic Glass[J]. Acta Metall Sin, 2024, 60(8): 1119-1129.
1 |
Tanaka H. General view of a liquid-liquid phase transition [J]. Phys. Rev., 2000, 62E: 6968
|
2 |
Harrington S, Zhang R, Poole P H, et al. Liquid-liquid phase transition: Evidence from simulations [J]. Phys. Rev. Lett., 1997, 78: 2409
|
3 |
Kurita R, Tanaka H. On the abundance and general nature of the liquid-liquid phase transition in molecular systems [J]. J. Phys. Condens. Matter, 2005, 17: L293
|
4 |
Zalden P, Quirin F, Schumacher M, et al. Femtosecond X-ray diffraction reveals a liquid-liquid phase transition in phase-change materials [J]. Science, 2019, 364: 1062
doi: 10.1126/science.aaw1773
pmid: 31197008
|
5 |
Lan S, Wu Z D, Wei X Y, et al. Structure origin of a transition of classic-to-avalanche nucleation in Zr-Cu-Al bulk metallic glasses [J]. Acta Mater., 2018, 149: 108
|
6 |
Gallo P, Bachler J, Bove L E, et al. Advances in the study of supercooled water [J]. Eur. Phys. J., 2021, 44E: 143
|
7 |
Wilding M C, Wilson M, McMillan P F. Structural studies and polymorphism in amorphous solids and liquids at high pressure [J]. Chem. Soc. Rev., 2006, 35: 964
pmid: 17003901
|
8 |
Boates B, Bonev S A. First-order liquid-liquid phase transition in compressed nitrogen [J]. Phys. Rev. Lett., 2009, 102: 015701
|
9 |
Mukherjee G D, Boehler R. High-pressure melting curve of nitrogen and the liquid-liquid phase transition [J]. Phys. Rev. Lett., 2007, 99: 225701
|
10 |
Mishima O, Calvert L D, Whalley E. An apparently first-order transition between two amorphous phases of ice induced by pressure [J]. Nature, 1985, 314: 76
|
11 |
Mishima O, Takemura K, Aoki K. Visual observations of the amorphous-amorphous transition in H2O under pressure [J]. Science, 1991, 254: 406
pmid: 17742228
|
12 |
Brazhkin V V, Popova S V, Voloshin R N. High-pressure transformations in simple melts [J]. High Pressure Res., 1997, 15: 267
|
13 |
Tamblyn I, Bonev S A. Structure and phase boundaries of compressed liquid hydrogen [J]. Phys. Rev. Lett., 2010, 104: 065702
|
14 |
Kim K H, Amann-Winkel K, Giovambattista N, et al. Experimental observation of the liquid-liquid transition in bulk supercooled water under pressure [J]. Science, 2020, 370: 978
doi: 10.1126/science.abb9385
pmid: 33214280
|
15 |
Henry L, Mezouar M, Garbarino G, et al. Liquid-liquid transition and critical point in sulfur [J]. Nature, 2020, 584: 382
|
16 |
Yang Z Q, Xu J X, Zhao G, et al. Ab initio investigation of the first-order liquid-liquid phase transition in molten sulfur [J]. Phys. Rev., 2024, 109B: 014209
|
17 |
Yao B, Paluch M, Wojnarowska Z. Effect of bulky anions on the liquid-liquid phase transition in phosphonium ionic liquids: Ambient and high-pressure dielectric studies [J]. Sci. Rep., 2023, 13: 3040
doi: 10.1038/s41598-023-29518-8
pmid: 36810358
|
18 |
Yao B B, Paluch M, Dulski M, et al. Tailoring phosphonium ionic liquids for a liquid-liquid phase transition [J]. J. Phys. Chem. Lett., 2023, 14: 2958
doi: 10.1021/acs.jpclett.3c00099
pmid: 36939303
|
19 |
Zhou C, Hu L N, Sun Q J, et al. Indication of liquid-liquid phase transition in CuZr-based melts [J]. Appl. Phys. Lett., 2013, 103: 171904
|
20 |
Ge J C, He H Y, Zhou J, et al. In-situ scattering study of a liquid-liquid phase transition in Fe-B-Nb-Y supercooled liquids and its correlation with glass-forming ability [J]. J. Alloys Compd., 2019, 787: 831
|
21 |
Dong W X, Wu Z D, Ge J C, et al. In situ neutron scattering studies of a liquid-liquid phase transition in the supercooled liquid of a Zr-Cu-Al-Ag glass-forming alloy [J]. Appl. Phys. Lett., 2021, 118: 191901
|
22 |
Dong W X, Ge J C, Ke Y B, et al. In-situ observation of an unusual phase transformation pathway with Guinier-Preston zone-like precipitates in Zr-based bulk metallic glasses [J]. J. Alloys Compd., 2020, 819: 153049
|
23 |
Lan S, Ren Y, Wei X Y, et al. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses [J]. Nat. Commun., 2017, 8: 14679
doi: 10.1038/ncomms14679
pmid: 28303882
|
24 |
Lan S, Blodgett M, Kelton K F, et al. Structural crossover in a supercooled metallic liquid and the link to a liquid-to-liquid phase transition [J]. Appl. Phys. Lett., 2016, 108: 211907
|
25 |
Küchemann S, Samwer K. Ultrafast heating of metallic glasses reveals disordering of the amorphous structure [J]. Acta Mater., 2016, 104: 119
|
26 |
Hammersley A P. FIT2D: A multi-purpose data reduction, analysis and visualization program [J]. J. Appl. Cryst., 2016, 49: 646
|
27 |
Qiu X, Thompson J W, Billinge S J L. PDFgetX2: A GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data [J]. J. Appl. Cryst., 2004, 37: 678
|
28 |
Koza M M, Schober H, Fischer H E, et al. Kinetics of the high- to low-density amorphous water transition [J]. J. Phys. Condens. Matter 2003, 15: 321
|
29 |
Price D L, Moss S C, Reijers R, et al. Intermediate-range order in glasses and liquids [J]. J. Phys. Condens. Matter 1989, 1: 1005
|
30 |
Sampath S, Benmore C J, Lantzky K M, et al. Intermediate-range order in permanently densified GeO2 glass [J]. Phys. Rev. Lett., 2003, 90: 115502
|
31 |
Ge J C, Luo P, Wu Z D, et al. Correlations of multiscale structural evolution and homogeneous flows in metallic glass ribbons [J]. Mater. Res. Lett., 2023, 11: 547
|
32 |
Egami T, Billinge S J L. Underneath the Bragg Peaks: Structural Analysis of Complex Materials [M]. 2nd Ed., San Diego, the USA: Pergamon, 2012: 1
|
33 |
Klug H P, Alexander L E. X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials [M]. 2nd Ed., Hoboken: Wiley, 1974: 1
|
34 |
Gaskell P H. Local and medium range structures in amorphous alloys [J]. J. Non-Cryst. Solids, 1985, 75: 329
|
35 |
Lan S, Zhu L, Wu Z D, et al. A medium-range structure motif linking amorphous and crystalline states [J]. Nat. Mater., 2021, 20: 1347
doi: 10.1038/s41563-021-01011-5
pmid: 34017117
|
36 |
Masumoto T, Maddin R. The mechanical properties of palladium 20 a/o silicon alloy quenched from the liquid state [J]. Acta Metall., 1971, 19: 725
|
37 |
Ma D, Stoica A D, Yang L, et al. Nearest-neighbor coordination and chemical ordering in multicomponent bulk metallic glasses [J]. Appl. Phys. Lett., 2007, 90: 211908
|
38 |
Ding J, Ma E, Asta M, et al. Second-nearest-neighbor correlations from connection of atomic packing motifs in metallic glasses and liquids [J]. Sci. Rep., 2015, 5: 17429
doi: 10.1038/srep17429
pmid: 26616762
|
39 |
Ohkubo T, Hirotsu Y. Electron diffraction and high-resolution electron microscopy study of an amorphous Pd82Si18 alloy with nanoscale phase separation [J]. Phys. Rev., 2003, 67B: 094201
|
40 |
Bussey J M, Weber M H, Smith-Gray N J, et al. Examining phase separation and crystallization in glasses with X-ray nano-computed tomography [J]. J. Non-Cryst. Solids, 2023, 600: 121987
|
41 |
Stoica M, Sarac B, Spieckermann F, et al. X-ray diffraction computed nanotomography applied to solve the structure of hierarchically phase-separated metallic glass [J]. ACS Nano, 2021, 15: 2386
doi: 10.1021/acsnano.0c04851
pmid: 33512138
|
42 |
Zhou Q, Han W C, Luo D W, et al. Mechanical and tribological properties of Zr-Cu-Ni-Al bulk metallic glasses with dual-phase structure [J]. Wear, 2021, 474-475: 203880
|
43 |
Kumar G, Nagahama D, Ohnuma M, et al. Structural evolution in the supercooled liquid of Zr36Ti24Be40 metallic glass [J]. Scr. Mater., 2006, 54: 801
|
44 |
Zheng H J, Lv Y M, Sun Q J, et al. Thermodynamic evidence for cluster ordering in Cu46Zr42Al7Y5 ribbons during glass transition [J]. Sci. Bull., 2016, 61: 706
|
45 |
Marcus M A. Phase separation and crystallization in amorphous Pd-Si-Sb [J]. J. Non-Cryst. Solids, 1979, 30: 317
|
46 |
Liu S N, Wang L F, Ge J C, et al. Deformation-enhanced hierarchical multiscale structure heterogeneity in a Pd-Si bulk metallic glass [J]. Acta Mater., 2020, 200: 42
|
47 |
Kim D H, Kim W T, Park E S, et al. Phase separation in metallic glasses [J]. Prog. Mater. Sci., 2013, 58: 1103
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|