|
|
不锈钢纤维增强镁基仿生复合材料制备与力学性能 |
谢丽文1,2, 张立龙3, 刘艳艳1, 张明阳1, 王绍钢4, 焦大1, 刘增乾1( ), 张哲峰1( ) |
1 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 2 中国科学技术大学 纳米科学技术学院 苏州 215123 3 沈阳铸造研究所有限公司 高端装备轻合金铸造技术国家重点实验室 沈阳 110022 4 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 |
|
Fabrication and Mechanical Properties of Bioinspired Mg-Based Composites Reinforced by Stainless Steel Fibers |
XIE Liwen1,2, ZHANG Lilong3, LIU Yanyan1, ZHANG Mingyang1, WANG Shaogang4, JIAO Da1, LIU Zengqian1( ), ZHANG Zhefeng1( ) |
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China 3 State Key Laboratory of Light Alloy Foundry Technology for High-End Equipment, Shenyang Research Institute of Foundry Co. Ltd., Shenyang 110022, China 4 Shenyang National Laboratory for Material Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
谢丽文, 张立龙, 刘艳艳, 张明阳, 王绍钢, 焦大, 刘增乾, 张哲峰. 不锈钢纤维增强镁基仿生复合材料制备与力学性能[J]. 金属学报, 2024, 60(6): 760-769.
Liwen XIE,
Lilong ZHANG,
Yanyan LIU,
Mingyang ZHANG,
Shaogang WANG,
Da JIAO,
Zengqian LIU,
Zhefeng ZHANG.
Fabrication and Mechanical Properties of Bioinspired Mg-Based Composites Reinforced by Stainless Steel Fibers[J]. Acta Metall Sin, 2024, 60(6): 760-769.
1 |
Pan F S, Jiang B. Development and application of plastic processing technologies of magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
|
1 |
潘复生, 蒋 斌. 镁合金塑性加工技术发展及应用 [J]. 金属学报, 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
|
2 |
Mordike B L, Ebert T. Magnesium: Properties-applications-Potential [J]. Mater. Sci. Eng., 2001, A302: 37
|
3 |
Pollock T M. Weight loss with magnesium alloys [J]. Science, 2010, 328: 986
doi: 10.1126/science.1182848
pmid: 20489013
|
4 |
Tian Y, Wu P P, Xiao L, et al. Technological advances in fabrication of magnesium matrix composites [J]. Mater. Rev., 2016, 30(19): 32
|
4 |
田 莹, 吴萍萍, 肖 旅 等. 镁基复合材料的制备技术进展 [J]. 材料导报, 2016, 30(19): 32
|
5 |
Li D J, Zeng X Q, Dong J, et al. Microstructure evolution of Mg-10Gd-3Y-1.2Zn-0.4Zr alloy during heat-treatment at 773 K [J]. J. Alloys Compd., 2009, 468: 164
|
6 |
Luo A, Pekguleryuz M O. Cast magnesium alloys for elevated temperature applications [J]. J. Mater. Sci., 1994, 29: 5259
|
7 |
Gu R C, Zhang J, Zhang M Y, et al. Fabrication of Mg-based composites reinforced by SiC whisker scaffolds with three-dimensional interpenetrating-phase architecture and their mechanical properties [J]. Acta Metall. Sin., 2022, 58: 857
doi: 10.11900/0412.1961.2021.00259
|
7 |
谷瑞成, 张 健, 张明阳 等. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能 [J]. 金属学报, 2022, 58: 857
doi: 10.11900/0412.1961.2021.00259
|
8 |
Ferkel H, Mordike B L. Magnesium strengthened by SiC nanoparticles [J]. Mater. Sci. Eng., 2001, A298: 193
|
9 |
Wang X J, Xu D K, Wu R Z, et al. What is going on in magnesium alloys? [J]. J. Mater. Sci. Technol., 2018, 34: 245
doi: 10.1016/j.jmst.2017.07.019
|
10 |
Wang S G, Xu J. Strengthening and toughening of Mg-based bulk metallic glass via in-situ formed B2-type AgMg phase [J]. J. Non-Cryst. Solids, 2013, 379: 40
|
11 |
Pan H C, Qin G W, Xu M, et al. Enhancing mechanical properties of Mg-Sn alloys by combining addition of Ca and Zn [J]. Mater. Des., 2015, 83: 736
|
12 |
Habibi M K, Joshi S P, Gupta M. Hierarchical magnesium nano-composites for enhanced mechanical response [J]. Acta Mater., 2010, 58: 6104
|
13 |
Habibnejad-Korayem M, Mahmudi R, Poole W J. Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles [J]. Mater. Sci. Eng., 2009, A519: 198
|
14 |
Li D J, Wang Q D, Blandin J J, et al. High temperature compressive deformation behavior of an extruded Mg-8Gd-3Y-0.5Zr (wt. %) alloy [J]. Mater. Sci. Eng., 2009, A526: 150
|
15 |
Wang L Q, Ren Y P, Sun S N, et al. Microstructure, mechanical properties and fracture behavior of as-extruded Zn-Mg binary alloys [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 931
|
16 |
Luo A. Processing, microstructure, and mechanical behavior of cast magnesium metal matrix composites [J]. Metall. Mater. Trans., 1995, 26A: 2445
|
17 |
Lloyd D J. Particle reinforced aluminium and magnesium matrix composites [J]. Int. Mater. Rev., 1994, 39: 1
|
18 |
Mayer G. Rigid biological systems as models for synthetic composites [J]. Science, 2005, 310: 1144
pmid: 16293751
|
19 |
Munch E, Launey M E, Alsem D H, et al. Tough, bio-inspired hybrid materials [J]. Science, 2008, 322: 1516
doi: 10.1126/science.1164865
pmid: 19056979
|
20 |
Tan G Q, Zhang J, Zheng L, et al. Nature-inspired nacre-like composites combining human tooth-matching elasticity and hardness with exceptional damage tolerance [J]. Adv. Mater., 2019, 31: 1904603
|
21 |
Liu Z Q, Meyers M A, Zhang Z F, et al. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications [J]. Prog. Mater. Sci., 2017, 88: 467
|
22 |
Dastjerdi A K, Barthelat F. Teleost fish scales amongst the toughest collagenous materials [J]. J. Mech. Behav. Biomed. Mater., 2015, 52: 95
doi: S1751-6161(14)00309-9
pmid: 25457170
|
23 |
Zimmermann E A, Gludovatz B, Schaible E, et al. Mechanical adaptability of the Bouligand-type structure in natural dermal armour [J]. Nat. Commun., 2013, 4: 2634
doi: 10.1038/ncomms3634
pmid: 24129554
|
24 |
Suksangpanya N, Yaraghi N A, Kisailus D, et al. Twisting cracks in Bouligand structures [J]. J. Mech. Behav. Biomed. Mater., 2017, 76: 38
doi: S1751-6161(17)30247-3
pmid: 28629739
|
25 |
Ikoma T, Kobayashi H, Tanaka J, et al. Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major [J]. J. Struct. Biol., 2003, 142: 327
|
26 |
Suksangpanya N, Yaraghi N A, Pipes R B, et al. Crack twisting and toughening strategies in Bouligand architectures [J]. Int. J. Solids Struct., 2018, 150: 83
|
27 |
Quan H C, Yang W, Schaible E, et al. Novel defense mechanisms in the armor of the scales of the “living fossil” Coelacanth fish [J]. Adv. Funct. Mater., 2018, 28: 1804237
|
28 |
Yin S, Yang W, Kwon J, et al. Hyperelastic phase-field fracture mechanics modeling of the toughening induced by Bouligand structures in natural materials [J]. J. Mech. Phys. Solids, 2019, 131: 204
|
29 |
Yang F, Xie W H, Meng S H. Analysis and simulation of fracture behavior in naturally occurring Bouligand structures [J]. Acta Biomater., 2021, 135: 473
|
30 |
Song Z Q, Ni Y, Cai S Q. Fracture modes and hybrid toughening mechanisms in oscillated/twisted plywood structure [J]. Acta Biomater., 2019, 91: 284
doi: S1742-7061(19)30290-9
pmid: 31028909
|
31 |
Quan H C, Yang W, Lapeyriere M, et al. Structure and mechanical adaptability of a modern elasmoid fish scale from the common carp [J]. Matter, 2020, 3: 842
|
32 |
Chen S M, Gao H L, Zhu Y B, et al. Biomimetic twisted plywood structural materials [J]. Natl. Sci. Rev., 2018, 5: 703
|
33 |
Huang W, Restrepo D, Jung J Y, et al. Multiscale toughening mechanisms in biological materials and bioinspired designs [J]. Adv. Mater., 2019, 31: 1901561
|
34 |
Grunenfelder L K, Suksangpanya N, Salinas C, et al. Bio-inspired impact-resistant composites [J]. Acta Biomater., 2014, 10: 3997
doi: 10.1016/j.actbio.2014.03.022
pmid: 24681369
|
35 |
Zhang Y, Tan G Q, Zhang M Y, et al. Bioinspired tungsten-copper composites with Bouligand-type architectures mimicking fish scales [J]. J. Mater. Sci. Technol., 2022, 96: 21
doi: 10.1016/j.jmst.2021.04.022
|
36 |
Liu Y Y, Yu Q, Tan G Q, et al. Bioinspired fish-scale-like magnesium composites strengthened by contextures of continuous titanium fibers: Lessons from Nature [J]. J. Magnes. Alloy., 2023, 11: 869
|
37 |
Zhang M Y, Zhao N, Yu Q, et al. On the damage tolerance of 3-D printed Mg-Ti interpenetrating-phase composites with bioinspired architectures [J]. Nat. Commun., 2022, 13: 3247
doi: 10.1038/s41467-022-30873-9
pmid: 35668100
|
38 |
Wang S G, Wang S C, Zhang L. Application of high resolution transmission X-ray tomography in material science [J]. Acta Metall. Sin., 2013, 49: 897
doi: 10.3724/SP.J.1037.2013.00107
|
38 |
王绍钢, 王苏程, 张 磊. 高分辨透射X射线三维成像在材料科学中的应用 [J]. 金属学报, 2013, 49: 897
doi: 10.3724/SP.J.1037.2013.00107
|
39 |
Hufenbach W, Ullrich H, Gude M, et al. Manufacture studies and impact behaviour of light metal matrix composites reinforced by steel wires [J]. Arch. Civ. Mech. Eng., 2012, 12: 265
|
40 |
Li Q Y, Li J, He G. Compressive properties and damping capacities of magnesium reinforced with continuous steel wire [J]. Mater. Sci. Eng., 2017, A680: 92
|
41 |
Wu S X, Wang S R, Wen D S, et al. Microstructure and mechanical properties of magnesium matrix composites interpenetrated by different reinforcement [J]. Appl. Sci., 2018, 8: 2012
|
42 |
Bowman R R, Misra A K, Arnold S M. Processing and mechanical properties of Al2O3 fiber-reinforced NiAl composites [J]. Metall. Mater. Trans., 1995, 26A: 615
|
43 |
Lin Z, Li V C. Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces [J]. J. Mech. Phys. Solids, 1997, 45: 763
|
44 |
Liu Z Q, Zhang Y Y, Zhang M Y, et al. Adaptive structural reorientation: Developing extraordinary mechanical properties by constrained flexibility in natural materials [J]. Acta Biomater., 2019, 86: 96
doi: S1742-7061(19)30030-3
pmid: 30639350
|
45 |
Hassan S F, Gupta M. Development of ductile magnesium composite materials using titanium as reinforcement [J]. J. Alloys Compd., 2002, 345: 246
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|