Please wait a minute...
金属学报  2024, Vol. 60 Issue (6): 760-769    DOI: 10.11900/0412.1961.2022.00269
  研究论文 本期目录 | 过刊浏览 |
不锈钢纤维增强镁基仿生复合材料制备与力学性能
谢丽文1,2, 张立龙3, 刘艳艳1, 张明阳1, 王绍钢4, 焦大1, 刘增乾1(), 张哲峰1()
1 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2 中国科学技术大学 纳米科学技术学院 苏州 215123
3 沈阳铸造研究所有限公司 高端装备轻合金铸造技术国家重点实验室 沈阳 110022
4 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Fabrication and Mechanical Properties of Bioinspired Mg-Based Composites Reinforced by Stainless Steel Fibers
XIE Liwen1,2, ZHANG Lilong3, LIU Yanyan1, ZHANG Mingyang1, WANG Shaogang4, JIAO Da1, LIU Zengqian1(), ZHANG Zhefeng1()
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
3 State Key Laboratory of Light Alloy Foundry Technology for High-End Equipment, Shenyang Research Institute of Foundry Co. Ltd., Shenyang 110022, China
4 Shenyang National Laboratory for Material Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

谢丽文, 张立龙, 刘艳艳, 张明阳, 王绍钢, 焦大, 刘增乾, 张哲峰. 不锈钢纤维增强镁基仿生复合材料制备与力学性能[J]. 金属学报, 2024, 60(6): 760-769.
Liwen XIE, Lilong ZHANG, Yanyan LIU, Mingyang ZHANG, Shaogang WANG, Da JIAO, Zengqian LIU, Zhefeng ZHANG. Fabrication and Mechanical Properties of Bioinspired Mg-Based Composites Reinforced by Stainless Steel Fibers[J]. Acta Metall Sin, 2024, 60(6): 760-769.

全文: PDF(3804 KB)   HTML
摘要: 

天然鱼鳞由于具有独特的组织结构而表现出优异的力学性能,可为金属材料的组织结构优化设计提供有益启示。本工作利用Mg熔体浸渗不锈钢纤维编织骨架的方法,制备了具有类似天然鱼鳞的正交层合板和双螺旋层合板结构的镁基仿生复合材料,并选用二维平面随机取向结构作为对比,表征了复合材料的相组成、微观结构以及在室温与200℃条件下的力学性能,揭示了其微观结构与力学性能之间的关系。结果表明,镁基复合材料中不锈钢纤维能够起到显著的强化作用,并且其力学性能与微观结构密切相关。与二维平面随机取向结构相比,类鱼鳞仿生结构表现出更高的拉伸强度和塑性,并且能够通过不锈钢纤维从Mg基体中拔出促进变形和消耗能量。特别是,类鱼鳞双螺旋层合板结构在室温条件下塑性更高,而在高温条件下强度更高,其不同取向的纤维之间能够协调变形,诱导裂纹发生偏转,并减弱变形和损伤的局域化程度。

关键词 镁基复合材料类鱼鳞结构仿生设计不锈钢纤维力学性能    
Abstract

Mg and Mg-based alloys are distinguished by their high specific strength-to-density ratios but demonstrate low strengths at ambient to elevated temperatures. Producing Mg-based composites offers an effective means of strengthening Mg. Nevertheless, the mechanical properties of Mg-based composites are primarily dependent on their architectures. Here, bioinspired Mg-based composites with fish-scale-like orthogonal plywood and double-twisted Bouligand-type (i.e., double-Bouligand) architectures were fabricated by the pressureless infiltration of an Mg melt into the woven contextures of stainless steel fibers. The phase constitution, microstructure, and tensile properties of the composites at room temperature and 200oC were compared with a composite where stainless steel fibers were randomly oriented in-plane. The relationships between the microstructure and mechanical properties were also explored. The results showed that the stainless steel fibers played a notable role in strengthening the composites and were pulled out from the Mg matrix to promote plastic deformation and energy consumption. The mechanical properties of the composites were closely associated with their microstructures, with fish-scale-like architectures displaying higher strengths and larger plasticity than the randomly oriented ones. In particular, the double-Bouligand architecture allowed coordinated deformation between the fibers of different orientations and promoted crack deflection along the fibers, thereby alleviating the localization of deformation and damage in the composite. Therefore, it bestowed larger plasticity at room temperature and higher tensile strength at high temperature. By exploiting new bioinspired architectures, this study provides guidance for optimizing the architectural design of Mg-based composites to improve their mechanical properties.

Key wordsMg-based composites    fish-scale-like architecture    bioinspired design    stainless steel fiber    mechanical property
收稿日期: 2022-05-31     
ZTFLH:  TB331  
基金资助:国家重点研发计划项目(2020YFA0710404);国家自然科学基金项目(52173269;51871216;52101160);中国科学院青年创新促进会项目(2019191)
通讯作者: 刘增乾,zengqianliu@imr.ac.cn,主要从事新型仿生材料研制及其使役行为研究;
张哲峰,zhfzhang@imr.ac.cn,主要从事材料的疲劳与断裂研究;
Corresponding author: LIU Zengqian, professor, Tel: (024)83970116, E-mail: zengqianliu@imr.ac.cn;
ZHANG Zhefeng, professor, Tel: (024)23971043, E-mail: zhfzhang@imr.ac.cn
作者简介: 谢丽文,女,1997年生,博士生
图1  不锈钢网的微观形貌
图2  具有不同微观结构的镁基复合材料中不锈钢纤维在三维空间的堆叠形式与空间排列的结构示意图
图3  具有不同微观结构的不锈钢纤维增强镁基复合材料沿厚度方向截面二维微观形貌的SEM像
图4  具有不同微观结构的镁基复合材料中不锈钢纤维在三维空间排布的XRT体积渲染图
图5  不锈钢纤维增强镁基复合材料的XRD谱、SEM像及对应区域的EDS元素面分布图(以正交层合板结构为例)
图6  具有不同微观结构的不锈钢纤维增强镁基复合材料和纯Mg在室温以及200℃的典型拉伸工程应力-应变曲线
图7  具有不同微观结构的不锈钢纤维增强镁基复合材料在室温拉伸断裂后的微观形貌
图8  具有不同微观结构的不锈钢纤维增强镁基复合材料在200℃拉伸断裂后的微观形貌
1 Pan F S, Jiang B. Development and application of plastic processing technologies of magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
1 潘复生, 蒋 斌. 镁合金塑性加工技术发展及应用 [J]. 金属学报, 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
2 Mordike B L, Ebert T. Magnesium: Properties-applications-Potential [J]. Mater. Sci. Eng., 2001, A302: 37
3 Pollock T M. Weight loss with magnesium alloys [J]. Science, 2010, 328: 986
doi: 10.1126/science.1182848 pmid: 20489013
4 Tian Y, Wu P P, Xiao L, et al. Technological advances in fabrication of magnesium matrix composites [J]. Mater. Rev., 2016, 30(19): 32
4 田 莹, 吴萍萍, 肖 旅 等. 镁基复合材料的制备技术进展 [J]. 材料导报, 2016, 30(19): 32
5 Li D J, Zeng X Q, Dong J, et al. Microstructure evolution of Mg-10Gd-3Y-1.2Zn-0.4Zr alloy during heat-treatment at 773 K [J]. J. Alloys Compd., 2009, 468: 164
6 Luo A, Pekguleryuz M O. Cast magnesium alloys for elevated temperature applications [J]. J. Mater. Sci., 1994, 29: 5259
7 Gu R C, Zhang J, Zhang M Y, et al. Fabrication of Mg-based composites reinforced by SiC whisker scaffolds with three-dimensional interpenetrating-phase architecture and their mechanical properties [J]. Acta Metall. Sin., 2022, 58: 857
doi: 10.11900/0412.1961.2021.00259
7 谷瑞成, 张 健, 张明阳 等. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能 [J]. 金属学报, 2022, 58: 857
doi: 10.11900/0412.1961.2021.00259
8 Ferkel H, Mordike B L. Magnesium strengthened by SiC nanoparticles [J]. Mater. Sci. Eng., 2001, A298: 193
9 Wang X J, Xu D K, Wu R Z, et al. What is going on in magnesium alloys? [J]. J. Mater. Sci. Technol., 2018, 34: 245
doi: 10.1016/j.jmst.2017.07.019
10 Wang S G, Xu J. Strengthening and toughening of Mg-based bulk metallic glass via in-situ formed B2-type AgMg phase [J]. J. Non-Cryst. Solids, 2013, 379: 40
11 Pan H C, Qin G W, Xu M, et al. Enhancing mechanical properties of Mg-Sn alloys by combining addition of Ca and Zn [J]. Mater. Des., 2015, 83: 736
12 Habibi M K, Joshi S P, Gupta M. Hierarchical magnesium nano-composites for enhanced mechanical response [J]. Acta Mater., 2010, 58: 6104
13 Habibnejad-Korayem M, Mahmudi R, Poole W J. Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles [J]. Mater. Sci. Eng., 2009, A519: 198
14 Li D J, Wang Q D, Blandin J J, et al. High temperature compressive deformation behavior of an extruded Mg-8Gd-3Y-0.5Zr (wt. %) alloy [J]. Mater. Sci. Eng., 2009, A526: 150
15 Wang L Q, Ren Y P, Sun S N, et al. Microstructure, mechanical properties and fracture behavior of as-extruded Zn-Mg binary alloys [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 931
16 Luo A. Processing, microstructure, and mechanical behavior of cast magnesium metal matrix composites [J]. Metall. Mater. Trans., 1995, 26A: 2445
17 Lloyd D J. Particle reinforced aluminium and magnesium matrix composites [J]. Int. Mater. Rev., 1994, 39: 1
18 Mayer G. Rigid biological systems as models for synthetic composites [J]. Science, 2005, 310: 1144
pmid: 16293751
19 Munch E, Launey M E, Alsem D H, et al. Tough, bio-inspired hybrid materials [J]. Science, 2008, 322: 1516
doi: 10.1126/science.1164865 pmid: 19056979
20 Tan G Q, Zhang J, Zheng L, et al. Nature-inspired nacre-like composites combining human tooth-matching elasticity and hardness with exceptional damage tolerance [J]. Adv. Mater., 2019, 31: 1904603
21 Liu Z Q, Meyers M A, Zhang Z F, et al. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications [J]. Prog. Mater. Sci., 2017, 88: 467
22 Dastjerdi A K, Barthelat F. Teleost fish scales amongst the toughest collagenous materials [J]. J. Mech. Behav. Biomed. Mater., 2015, 52: 95
doi: S1751-6161(14)00309-9 pmid: 25457170
23 Zimmermann E A, Gludovatz B, Schaible E, et al. Mechanical adaptability of the Bouligand-type structure in natural dermal armour [J]. Nat. Commun., 2013, 4: 2634
doi: 10.1038/ncomms3634 pmid: 24129554
24 Suksangpanya N, Yaraghi N A, Kisailus D, et al. Twisting cracks in Bouligand structures [J]. J. Mech. Behav. Biomed. Mater., 2017, 76: 38
doi: S1751-6161(17)30247-3 pmid: 28629739
25 Ikoma T, Kobayashi H, Tanaka J, et al. Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major [J]. J. Struct. Biol., 2003, 142: 327
26 Suksangpanya N, Yaraghi N A, Pipes R B, et al. Crack twisting and toughening strategies in Bouligand architectures [J]. Int. J. Solids Struct., 2018, 150: 83
27 Quan H C, Yang W, Schaible E, et al. Novel defense mechanisms in the armor of the scales of the “living fossil” Coelacanth fish [J]. Adv. Funct. Mater., 2018, 28: 1804237
28 Yin S, Yang W, Kwon J, et al. Hyperelastic phase-field fracture mechanics modeling of the toughening induced by Bouligand structures in natural materials [J]. J. Mech. Phys. Solids, 2019, 131: 204
29 Yang F, Xie W H, Meng S H. Analysis and simulation of fracture behavior in naturally occurring Bouligand structures [J]. Acta Biomater., 2021, 135: 473
30 Song Z Q, Ni Y, Cai S Q. Fracture modes and hybrid toughening mechanisms in oscillated/twisted plywood structure [J]. Acta Biomater., 2019, 91: 284
doi: S1742-7061(19)30290-9 pmid: 31028909
31 Quan H C, Yang W, Lapeyriere M, et al. Structure and mechanical adaptability of a modern elasmoid fish scale from the common carp [J]. Matter, 2020, 3: 842
32 Chen S M, Gao H L, Zhu Y B, et al. Biomimetic twisted plywood structural materials [J]. Natl. Sci. Rev., 2018, 5: 703
33 Huang W, Restrepo D, Jung J Y, et al. Multiscale toughening mechanisms in biological materials and bioinspired designs [J]. Adv. Mater., 2019, 31: 1901561
34 Grunenfelder L K, Suksangpanya N, Salinas C, et al. Bio-inspired impact-resistant composites [J]. Acta Biomater., 2014, 10: 3997
doi: 10.1016/j.actbio.2014.03.022 pmid: 24681369
35 Zhang Y, Tan G Q, Zhang M Y, et al. Bioinspired tungsten-copper composites with Bouligand-type architectures mimicking fish scales [J]. J. Mater. Sci. Technol., 2022, 96: 21
doi: 10.1016/j.jmst.2021.04.022
36 Liu Y Y, Yu Q, Tan G Q, et al. Bioinspired fish-scale-like magnesium composites strengthened by contextures of continuous titanium fibers: Lessons from Nature [J]. J. Magnes. Alloy., 2023, 11: 869
37 Zhang M Y, Zhao N, Yu Q, et al. On the damage tolerance of 3-D printed Mg-Ti interpenetrating-phase composites with bioinspired architectures [J]. Nat. Commun., 2022, 13: 3247
doi: 10.1038/s41467-022-30873-9 pmid: 35668100
38 Wang S G, Wang S C, Zhang L. Application of high resolution transmission X-ray tomography in material science [J]. Acta Metall. Sin., 2013, 49: 897
doi: 10.3724/SP.J.1037.2013.00107
38 王绍钢, 王苏程, 张 磊. 高分辨透射X射线三维成像在材料科学中的应用 [J]. 金属学报, 2013, 49: 897
doi: 10.3724/SP.J.1037.2013.00107
39 Hufenbach W, Ullrich H, Gude M, et al. Manufacture studies and impact behaviour of light metal matrix composites reinforced by steel wires [J]. Arch. Civ. Mech. Eng., 2012, 12: 265
40 Li Q Y, Li J, He G. Compressive properties and damping capacities of magnesium reinforced with continuous steel wire [J]. Mater. Sci. Eng., 2017, A680: 92
41 Wu S X, Wang S R, Wen D S, et al. Microstructure and mechanical properties of magnesium matrix composites interpenetrated by different reinforcement [J]. Appl. Sci., 2018, 8: 2012
42 Bowman R R, Misra A K, Arnold S M. Processing and mechanical properties of Al2O3 fiber-reinforced NiAl composites [J]. Metall. Mater. Trans., 1995, 26A: 615
43 Lin Z, Li V C. Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces [J]. J. Mech. Phys. Solids, 1997, 45: 763
44 Liu Z Q, Zhang Y Y, Zhang M Y, et al. Adaptive structural reorientation: Developing extraordinary mechanical properties by constrained flexibility in natural materials [J]. Acta Biomater., 2019, 86: 96
doi: S1742-7061(19)30030-3 pmid: 30639350
45 Hassan S F, Gupta M. Development of ductile magnesium composite materials using titanium as reinforcement [J]. J. Alloys Compd., 2002, 345: 246
[1] 许仁杰, 屠鑫, 胡斌, 罗海文. Cu-V双合金化3Mn钢的组织和力学性能[J]. 金属学报, 2024, 60(6): 817-825.
[2] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[3] 王郑, 王振玉, 汪爱英, 杨巍, 柯培玲. 微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响[J]. 金属学报, 2024, 60(5): 691-698.
[4] 汪建强, 刘威峰, 刘生, 徐斌, 孙明月, 李殿中. 700℃时效对9Cr ODS钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(5): 616-626.
[5] 田滕, 查敏, 殷皓亮, 花珍铭, 贾海龙, 王慧远. 低温高应变量衬板控轧高固溶Al-Mg合金高强塑性与高热稳定性机制[J]. 金属学报, 2024, 60(4): 473-484.
[6] 张光莹, 李岩, 黄丽颖, 定巍. 连续屈服、高强屈比中锰钢的工艺设计与组织调控[J]. 金属学报, 2024, 60(4): 443-452.
[7] 江浩文, 彭伟, 范增为, 汪杨鑫, 刘腾轼, 董瀚. Ag对奥氏体不锈钢组织和力学性能的影响[J]. 金属学报, 2024, 60(4): 434-442.
[8] 杨杰, 黄森森, 尹慧, 翟瑞志, 马英杰, 向伟, 罗恒军, 雷家峰, 杨锐. 航空用TC21钛合金变截面模锻件的显微组织和力学性能不均匀性分析[J]. 金属学报, 2024, 60(3): 333-347.
[9] 胡宝佳, 郑沁园, 路轶, 贾春妮, 梁田, 郑成武, 李殿中. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 189-200.
[10] 王秀琦, 李天瑞, 刘国怀, 郭瑞琪, 王昭东. 交叉包套轧制Ti-44Al-5Nb-1Mo-2V-0.2B合金的微观组织演化及力学性能[J]. 金属学报, 2024, 60(1): 95-106.
[11] 杨俊杰, 张昌盛, 李洪佳, 谢雷, 王虹, 孙光爱. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响[J]. 金属学报, 2024, 60(1): 30-42.
[12] 郑雄, 赖玉香, 向雪梅, 陈江华. 稀土元素LaAlMgSi合金性能和微结构的影响[J]. 金属学报, 2024, 60(1): 107-116.
[13] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[14] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[15] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.