|
|
微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响 |
王郑1, 王振玉1, 汪爱英1,2, 杨巍3, 柯培玲1,2( ) |
1 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 宁波 315201 2 中国科学院大学 材料与光电研究中心 北京 100049 3 西安工业大学 材料与化工学院 西安 710021 |
|
Influence of Micro-Arc Oxidation Time on Structure and Properties of MAO/Cr Composite Coatings |
WANG Zheng1, WANG Zhenyu1, WANG Aiying1,2, YANG Wei3, KE Peiling1,2( ) |
1 Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 3 School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China |
引用本文:
王郑, 王振玉, 汪爱英, 杨巍, 柯培玲. 微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响[J]. 金属学报, 2024, 60(5): 691-698.
Zheng WANG,
Zhenyu WANG,
Aiying WANG,
Wei YANG,
Peiling KE.
Influence of Micro-Arc Oxidation Time on Structure and Properties of MAO/Cr Composite Coatings[J]. Acta Metall Sin, 2024, 60(5): 691-698.
1 |
Azevedo C R F. Selection of fuel cladding material for nuclear fission reactors[J]. Eng. Fail. Anal., 2011, 18: 1943
doi: 10.1016/j.engfailanal.2011.06.010
|
2 |
Terrani K A. Accident tolerant fuel cladding development: Promise, status, and challenges[J]. J. Nucl. Mater., 2018, 501: 13
doi: 10.1016/j.jnucmat.2017.12.043
|
3 |
Kim H G, Yang J H, Kim W J, et al. Development status of accident-tolerant fuel for light water reactors in Korea[J]. Nucl. Eng. Technol., 2016, 48: 1
doi: 10.1016/j.net.2015.11.011
|
4 |
Kim H G, Kim I H, Jung Y I, et al. Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating[J]. J. Nucl. Mater., 2015, 465: 531
doi: 10.1016/j.jnucmat.2015.06.030
|
5 |
Ko J, Kim J W, Min H W, et al. Review of manufacturing technologies for coated accident tolerant fuel cladding[J]. J. Nucl. Mater., 2022, 561: 153562
doi: 10.1016/j.jnucmat.2022.153562
|
6 |
Yang J Q, Steinbrück M, Tang C C, et al. Review on chromium coated zirconium alloy accident tolerant fuel cladding[J]. J. Alloys Compd., 2022, 895: 162450
doi: 10.1016/j.jallcom.2021.162450
|
7 |
Wang X P, Guan H H, Liao Y Z, et al. Enhancement of high temperature steam oxidation resistance of ZrNb alloy with ZrO2/Cr bilayer coating[J]. Corros. Sci., 2021, 187: 109494
doi: 10.1016/j.corsci.2021.109494
|
8 |
Zhang L F, Lai P, Liu Q D, et al. Fretting wear behavior of zirconium alloy in B-Li water at 300oC[J]. J. Nucl. Mater., 2018, 499: 401
doi: 10.1016/j.jnucmat.2017.12.003
|
9 |
Jin D L, Ni N, Guo Y, et al. Corrosion of the bonding at FeCrAl/Zr alloy interfaces in steam[J]. J. Nucl. Mater., 2018, 508: 411
doi: 10.1016/j.jnucmat.2018.05.071
|
10 |
Lai P, Zhang H, Zhang L F, et al. Effect of micro-arc oxidation on fretting wear behavior of zirconium alloy exposed to high temperature water[J]. Wear, 2019, 424-425: 53
doi: 10.1016/j.wear.2019.02.001
|
11 |
Jiang J S, Wang D Q, Du M Y, et al. Interdiffusion behavior between Cr and Zr and its effect on the microcracking behavior in the Cr-coated Zr-4 alloy[J]. Nucl. Sci. Tech., 2021, 32: 1
|
12 |
Han X C, Chen C, Tan Y Q, et al. A systematic study of the oxidation behavior of Cr coatings on Zry4 substrates in high temperature steam environment[J]. Corros. Sci., 2020, 174: 108826
doi: 10.1016/j.corsci.2020.108826
|
13 |
Brachet J C, Rouesne E, Ribis J, et al. High temperature steam oxidation of chromium-coated zirconium-based alloys: Kinetics and process[J]. Corros. Sci., 2020, 167: 108537
doi: 10.1016/j.corsci.2020.108537
|
14 |
Shi W C, Dong L M, Li Q, et al. One-step approach for the fabrication and characterization of hydroxyapatite/TiO2 composite ceramic coatings by micro-arc oxidation in situ on the surface of pure titanium[J]. Key Eng. Mater., 2014, 602-603: 598
doi: 10.4028/www.scientific.net/KEM.602-603
|
15 |
Wang L L, Hu X, Nie X. Deposition and properties of zirconia coatings on a zirconium alloy produced by pulsed DC plasma electrolytic oxidation[J]. Surf. Coat. Technol., 2013, 221: 150
doi: 10.1016/j.surfcoat.2013.01.040
|
16 |
Wei K J, Wang X P, Zhu M H, et al. Effects of Li, B and H elements on corrosion property of oxide films on ZIRLO alloy in 300oC/14 MPa lithium borate buffer solutions[J]. Corros. Sci., 2021, 181: 109216
doi: 10.1016/j.corsci.2020.109216
|
17 |
Wang X P, Wei K J, Guan H H, et al. High temperature oxidation of Zr-1Nb alloy with plasma electrolytic oxidation coating in 900-1200oC steam environment[J]. Surf. Coat. Technol., 2021, 407: 126768
doi: 10.1016/j.surfcoat.2020.126768
|
18 |
Zuo X, Zhang D, Chen R D, et al. Spectroscopic investigation on the near-substrate plasma characteristics of chromium HiPIMS in low density discharge mode[J]. Plasma Sources Sci. Technol., 2020, 29: 015013
|
19 |
Quillin K, Yeom H, Dabney T, et al. Microstructural and nanomechanical studies of PVD Cr coatings on SiC for LWR fuel cladding applications[J]. Surf. Coat. Technol., 2022, 441: 128577
doi: 10.1016/j.surfcoat.2022.128577
|
20 |
Park J H, Kim H G, Park J Y, et al. High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings[J]. Surf. Coat. Technol., 2015, 280: 256
doi: 10.1016/j.surfcoat.2015.09.022
|
21 |
Anstis G R, Chantikul P, Lawn B R, et al. A critical evaluation of indentation techniques for measuring fracture-toughness: I, Direct crack measurements[J]. J. Am. Ceram. Soc., 1981, 64: 533
doi: 10.1111/jace.1981.64.issue-9
|
22 |
Wu J K, Wang H K, Zhang Z C, et al. High-pressure synthesis and performance analysis of WC-cBN-MoS2 self-lubricating ceramic composites[J]. Int. J. Refract. Met. Hard Mater., 2023, 110: 105989
doi: 10.1016/j.ijrmhm.2022.105989
|
23 |
Gautier C, Machet J. Effects of deposition parameters on the texture of chromium films deposited by vacuum arc evaporation[J]. Thin Solid Films, 1996, 289: 34
doi: 10.1016/S0040-6090(96)08891-8
|
24 |
Zhang J M, Xu K W, Zhang M R. Theory of abnormal grain growth in thin films and analysis of energy anisotropy[J]. Acta Phys. Sin., 2003, 52: 1207
doi: 10.7498/aps
|
24 |
张建民, 徐可为, 张美荣. 薄膜中异常晶粒生长理论及能量各向异性分析[J]. 物理学报, 2003, 52: 1207
|
25 |
Wang Z X, Zhang J W, Lv W J, et al. Growth mechanism of ceramic coating on ZK60 magnesium alloy Based on two-step current-decreasing mode of micro-arc oxidation[J]. Adv. Eng. Mater., 2022, 24: 2101232
doi: 10.1002/adem.v24.6
|
26 |
Huang J H, Wei L J, Ting I S. Evaluation of fracture toughness of VN hard coatings: Effect of preferred orientation[J]. Mater. Chem. Phys., 2022, 275: 125253
doi: 10.1016/j.matchemphys.2021.125253
|
27 |
Wang Y M, Zhang P F, Guo L X, et al. Effect of microarc oxidation coating on fatigue performance of Ti-Al-Zr alloy[J]. Appl. Surf. Sci., 2009, 255: 8616
doi: 10.1016/j.apsusc.2009.06.038
|
28 |
Meng Y, Zeng S, Teng Z, et al. Control of the preferential orientation Cr coatings deposited on zircaloy substrates and study of their oxidation behavior[J]. Thin Solid Films, 2021, 730: 138699
doi: 10.1016/j.tsf.2021.138699
|
29 |
Wang S X, Bai S X, Zhu L A, et al. Research progress of chromium coating on zirconium alloy for nuclear fuel cladding[J]. Surf. Technol., 2021, 50(1): 221
|
29 |
王淑祥, 白书欣, 朱利安 等. 核燃料包壳锆合金表面铬涂层研究进展[J]. 表面技术, 2021, 50(1): 221
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|