Please wait a minute...
金属学报  2024, Vol. 60 Issue (5): 691-698    DOI: 10.11900/0412.1961.2022.00510
  研究论文 本期目录 | 过刊浏览 |
微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响
王郑1, 王振玉1, 汪爱英1,2, 杨巍3, 柯培玲1,2()
1 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 宁波 315201
2 中国科学院大学 材料与光电研究中心 北京 100049
3 西安工业大学 材料与化工学院 西安 710021
Influence of Micro-Arc Oxidation Time on Structure and Properties of MAO/Cr Composite Coatings
WANG Zheng1, WANG Zhenyu1, WANG Aiying1,2, YANG Wei3, KE Peiling1,2()
1 Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
引用本文:

王郑, 王振玉, 汪爱英, 杨巍, 柯培玲. 微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响[J]. 金属学报, 2024, 60(5): 691-698.
Zheng WANG, Zhenyu WANG, Aiying WANG, Wei YANG, Peiling KE. Influence of Micro-Arc Oxidation Time on Structure and Properties of MAO/Cr Composite Coatings[J]. Acta Metall Sin, 2024, 60(5): 691-698.

全文: PDF(2398 KB)   HTML
摘要: 

自福岛核事故发生以来,事故容错燃料包壳涂层受到了广泛关注。本工作通过微弧氧化(MAO)和高功率脉冲磁控溅射(HiPIMS) 2种技术在Zirlo锆合金基体上制备了MAO/Cr复合涂层,研究了微弧氧化时间对MAO/Cr复合涂层微观结构、力学性能以及抗高温水蒸气氧化性能的影响。结果表明:当微弧氧化时间由3 min增加到9 min时,复合涂层表面(200)织构系数由83%增加到100%;随着微弧氧化时间的增加,复合涂层的断裂韧性呈先增大后减小的趋势,在6 min时达到峰值4.64 MPa·m1/2;经900℃水蒸气氧化1 h后,复合涂层体系均产生明显分层,其中MAO3min/Cr与MAO6min/Cr复合涂层增重幅度较小,而MAO9min/Cr复合涂层增重幅度较大,并在表截面形成大量微裂纹。当微弧氧化时间为6 min时,制备的复合涂层具有出色的力学性能和优异的抗高温水蒸气氧化性能。

关键词 微弧氧化高功率脉冲磁控溅射微观结构力学性能抗高温水蒸气氧化    
Abstract

Since the 2011 Fukushima nuclear accident, much attention has been given to accident-tolerant fuel cladding coating. In this study, micro-arc oxidation (MAO) and high-power pulsed magnetron sputtering were employed to deposit MAO/Cr composite coatings on the surface of Zirlo alloy. The effects of micro-arc oxidation time on the microstructure, mechanical properties, and high-temperature steam oxidation resistance of MAO/Cr composite coatings were investigated. Results showed that when the micro-arc oxidation time was enhanced from 3 min to 9 min, the (200)-plan texture coefficient increased from 83% to 100%. Moreover, with the increase in micro-arc oxidation time, the composite coating fracture toughness first increased, and then decreased after reaching a peak of 4.64 MPa⋅m1/2 in 6 min. After steam oxidation at 900°C for 1 h, the composite coating systems showed delamination. Among them, MAO3min/Cr and MAO6min/Cr coatings gained less weight, whereas MAO9min/Cr coating gained more weight and formed a large number of microcracks on its surface cross-section. It can be observed that the obtained composite coating with a 6-min micro-arc oxidation has both excellent mechanical properties and outstanding resistance to high-temperature steam oxidation.

Key wordsmicro-arc oxidation    high-power pulsed magnetron sputtering    microstructure    mechanical property    high-temperature steam oxidation resistance
收稿日期: 2022-10-12     
ZTFLH:  TG174.4  
基金资助:中科院创新团队项目(292020000008)
通讯作者: 柯培玲,kepl@nimte.ac.cn,主要从事气相沉积技术的研究
Corresponding author: KE Peiling, professor, Tel: (0574)86694790, E-mail: kepl@nimte.ac.cn
作者简介: 王 郑,男,1996年生,硕士生
图1  微弧氧化沉积系统及高功率脉冲磁控溅射沉积系统示意图

Method

Time

min

Ar flow

mL·min-1

Pressure

Pa

Bias voltage

V

Power supply

Power

kW

Current

A

Voltage

V

Pulse width

μs

Duty ratio
Etching1540--300-----
HiPIMS420500.27-803.04.07601005%
表1  Cr涂层沉积参数
图2  3种复合涂层的XRD谱及织构系数图
图3  3种复合涂层的表/截面形貌的SEM像
图4  纯Cr涂层和复合涂层的硬度曲线和相应的压痕形貌
CoatingP1P2P3Average
MAO3min/Cr1.641.671.731.68
MAO6min/Cr4.754.594.594.64
MAO9min/Cr2.132.032.072.08
表2  3种复合涂层的断裂韧性 (MPa·m1/2)
图5  高温水蒸气腐蚀后3种复合涂层的氧化增重和物相组成及织构系数
图6  高温水蒸气腐蚀后3种复合涂层的表面形貌SEM像
PointCrO
136.9463.06
242.0957.91
335.6664.34
439.3760.63
536.1163.89
640.9859.02
表3  图6中各点成分EDS结果 (atomic fraction / %)
图7  高温水蒸气腐蚀后3种复合涂层的截面形貌SEM像及EDS线扫描分析
图8  HF酸溶液刻蚀后3种腐蚀态复合涂层的截面形貌
图9  MAO9min/Cr复合涂层在900℃水蒸气环境中的氧化过程示意图
1 Azevedo C R F. Selection of fuel cladding material for nuclear fission reactors[J]. Eng. Fail. Anal., 2011, 18: 1943
doi: 10.1016/j.engfailanal.2011.06.010
2 Terrani K A. Accident tolerant fuel cladding development: Promise, status, and challenges[J]. J. Nucl. Mater., 2018, 501: 13
doi: 10.1016/j.jnucmat.2017.12.043
3 Kim H G, Yang J H, Kim W J, et al. Development status of accident-tolerant fuel for light water reactors in Korea[J]. Nucl. Eng. Technol., 2016, 48: 1
doi: 10.1016/j.net.2015.11.011
4 Kim H G, Kim I H, Jung Y I, et al. Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating[J]. J. Nucl. Mater., 2015, 465: 531
doi: 10.1016/j.jnucmat.2015.06.030
5 Ko J, Kim J W, Min H W, et al. Review of manufacturing technologies for coated accident tolerant fuel cladding[J]. J. Nucl. Mater., 2022, 561: 153562
doi: 10.1016/j.jnucmat.2022.153562
6 Yang J Q, Steinbrück M, Tang C C, et al. Review on chromium coated zirconium alloy accident tolerant fuel cladding[J]. J. Alloys Compd., 2022, 895: 162450
doi: 10.1016/j.jallcom.2021.162450
7 Wang X P, Guan H H, Liao Y Z, et al. Enhancement of high temperature steam oxidation resistance of ZrNb alloy with ZrO2/Cr bilayer coating[J]. Corros. Sci., 2021, 187: 109494
doi: 10.1016/j.corsci.2021.109494
8 Zhang L F, Lai P, Liu Q D, et al. Fretting wear behavior of zirconium alloy in B-Li water at 300oC[J]. J. Nucl. Mater., 2018, 499: 401
doi: 10.1016/j.jnucmat.2017.12.003
9 Jin D L, Ni N, Guo Y, et al. Corrosion of the bonding at FeCrAl/Zr alloy interfaces in steam[J]. J. Nucl. Mater., 2018, 508: 411
doi: 10.1016/j.jnucmat.2018.05.071
10 Lai P, Zhang H, Zhang L F, et al. Effect of micro-arc oxidation on fretting wear behavior of zirconium alloy exposed to high temperature water[J]. Wear, 2019, 424-425: 53
doi: 10.1016/j.wear.2019.02.001
11 Jiang J S, Wang D Q, Du M Y, et al. Interdiffusion behavior between Cr and Zr and its effect on the microcracking behavior in the Cr-coated Zr-4 alloy[J]. Nucl. Sci. Tech., 2021, 32: 1
12 Han X C, Chen C, Tan Y Q, et al. A systematic study of the oxidation behavior of Cr coatings on Zry4 substrates in high temperature steam environment[J]. Corros. Sci., 2020, 174: 108826
doi: 10.1016/j.corsci.2020.108826
13 Brachet J C, Rouesne E, Ribis J, et al. High temperature steam oxidation of chromium-coated zirconium-based alloys: Kinetics and process[J]. Corros. Sci., 2020, 167: 108537
doi: 10.1016/j.corsci.2020.108537
14 Shi W C, Dong L M, Li Q, et al. One-step approach for the fabrication and characterization of hydroxyapatite/TiO2 composite ceramic coatings by micro-arc oxidation in situ on the surface of pure titanium[J]. Key Eng. Mater., 2014, 602-603: 598
doi: 10.4028/www.scientific.net/KEM.602-603
15 Wang L L, Hu X, Nie X. Deposition and properties of zirconia coatings on a zirconium alloy produced by pulsed DC plasma electrolytic oxidation[J]. Surf. Coat. Technol., 2013, 221: 150
doi: 10.1016/j.surfcoat.2013.01.040
16 Wei K J, Wang X P, Zhu M H, et al. Effects of Li, B and H elements on corrosion property of oxide films on ZIRLO alloy in 300oC/14 MPa lithium borate buffer solutions[J]. Corros. Sci., 2021, 181: 109216
doi: 10.1016/j.corsci.2020.109216
17 Wang X P, Wei K J, Guan H H, et al. High temperature oxidation of Zr-1Nb alloy with plasma electrolytic oxidation coating in 900-1200oC steam environment[J]. Surf. Coat. Technol., 2021, 407: 126768
doi: 10.1016/j.surfcoat.2020.126768
18 Zuo X, Zhang D, Chen R D, et al. Spectroscopic investigation on the near-substrate plasma characteristics of chromium HiPIMS in low density discharge mode[J]. Plasma Sources Sci. Technol., 2020, 29: 015013
19 Quillin K, Yeom H, Dabney T, et al. Microstructural and nanomechanical studies of PVD Cr coatings on SiC for LWR fuel cladding applications[J]. Surf. Coat. Technol., 2022, 441: 128577
doi: 10.1016/j.surfcoat.2022.128577
20 Park J H, Kim H G, Park J Y, et al. High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings[J]. Surf. Coat. Technol., 2015, 280: 256
doi: 10.1016/j.surfcoat.2015.09.022
21 Anstis G R, Chantikul P, Lawn B R, et al. A critical evaluation of indentation techniques for measuring fracture-toughness: I, Direct crack measurements[J]. J. Am. Ceram. Soc., 1981, 64: 533
doi: 10.1111/jace.1981.64.issue-9
22 Wu J K, Wang H K, Zhang Z C, et al. High-pressure synthesis and performance analysis of WC-cBN-MoS2 self-lubricating ceramic composites[J]. Int. J. Refract. Met. Hard Mater., 2023, 110: 105989
doi: 10.1016/j.ijrmhm.2022.105989
23 Gautier C, Machet J. Effects of deposition parameters on the texture of chromium films deposited by vacuum arc evaporation[J]. Thin Solid Films, 1996, 289: 34
doi: 10.1016/S0040-6090(96)08891-8
24 Zhang J M, Xu K W, Zhang M R. Theory of abnormal grain growth in thin films and analysis of energy anisotropy[J]. Acta Phys. Sin., 2003, 52: 1207
doi: 10.7498/aps
24 张建民, 徐可为, 张美荣. 薄膜中异常晶粒生长理论及能量各向异性分析[J]. 物理学报, 2003, 52: 1207
25 Wang Z X, Zhang J W, Lv W J, et al. Growth mechanism of ceramic coating on ZK60 magnesium alloy Based on two-step current-decreasing mode of micro-arc oxidation[J]. Adv. Eng. Mater., 2022, 24: 2101232
doi: 10.1002/adem.v24.6
26 Huang J H, Wei L J, Ting I S. Evaluation of fracture toughness of VN hard coatings: Effect of preferred orientation[J]. Mater. Chem. Phys., 2022, 275: 125253
doi: 10.1016/j.matchemphys.2021.125253
27 Wang Y M, Zhang P F, Guo L X, et al. Effect of microarc oxidation coating on fatigue performance of Ti-Al-Zr alloy[J]. Appl. Surf. Sci., 2009, 255: 8616
doi: 10.1016/j.apsusc.2009.06.038
28 Meng Y, Zeng S, Teng Z, et al. Control of the preferential orientation Cr coatings deposited on zircaloy substrates and study of their oxidation behavior[J]. Thin Solid Films, 2021, 730: 138699
doi: 10.1016/j.tsf.2021.138699
29 Wang S X, Bai S X, Zhu L A, et al. Research progress of chromium coating on zirconium alloy for nuclear fuel cladding[J]. Surf. Technol., 2021, 50(1): 221
29 王淑祥, 白书欣, 朱利安 等. 核燃料包壳锆合金表面铬涂层研究进展[J]. 表面技术, 2021, 50(1): 221
[1] 汪建强, 刘威峰, 刘生, 徐斌, 孙明月, 李殿中. 700℃时效对9Cr ODS钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(5): 616-626.
[2] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[3] 刘仲武, 周帮, 廖雪峰, 何家毅. 全高丰度稀土(Ce, La, Y)-Fe-B永磁的研究现状和未来发展[J]. 金属学报, 2024, 60(5): 585-604.
[4] 田滕, 查敏, 殷皓亮, 花珍铭, 贾海龙, 王慧远. 低温高应变量衬板控轧高固溶Al-Mg合金高强塑性与高热稳定性机制[J]. 金属学报, 2024, 60(4): 473-484.
[5] 江浩文, 彭伟, 范增为, 汪杨鑫, 刘腾轼, 董瀚. Ag对奥氏体不锈钢组织和力学性能的影响[J]. 金属学报, 2024, 60(4): 434-442.
[6] 张光莹, 李岩, 黄丽颖, 定巍. 连续屈服、高强屈比中锰钢的工艺设计与组织调控[J]. 金属学报, 2024, 60(4): 443-452.
[7] 杨杰, 黄森森, 尹慧, 翟瑞志, 马英杰, 向伟, 罗恒军, 雷家峰, 杨锐. 航空用TC21钛合金变截面模锻件的显微组织和力学性能不均匀性分析[J]. 金属学报, 2024, 60(3): 333-347.
[8] 胡宝佳, 郑沁园, 路轶, 贾春妮, 梁田, 郑成武, 李殿中. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 189-200.
[9] 杨俊杰, 张昌盛, 李洪佳, 谢雷, 王虹, 孙光爱. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响[J]. 金属学报, 2024, 60(1): 30-42.
[10] 郑雄, 赖玉香, 向雪梅, 陈江华. 稀土元素LaAlMgSi合金性能和微结构的影响[J]. 金属学报, 2024, 60(1): 107-116.
[11] 王秀琦, 李天瑞, 刘国怀, 郭瑞琪, 王昭东. 交叉包套轧制Ti-44Al-5Nb-1Mo-2V-0.2B合金的微观组织演化及力学性能[J]. 金属学报, 2024, 60(1): 95-106.
[12] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[13] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[14] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[15] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.