|
|
多场耦合侵蚀下环保Ag/Ti2SnC复合电接触材料的微/纳米力学行为及微结构演变 |
丁宽宽1, 丁健翔1,2( ), 张凯歌1, 白忠臣3, 张培根2( ), 孙正明1,2 |
1 安徽工业大学 材料科学与工程学院 马鞍山 243002 2 东南大学 材料科学与工程学院 江苏省先进金属材料重点实验室 南京 211189 3 贵州大学 贵州省光电子技术与应用重点实验室 贵阳 550025 |
|
Micro/Nano-Mechanical Behavior and Microstructure Evolution of Eco-Friendly Ag/Ti2SnC Composite Electrical Contacts Under Multi-Field Coupled Erosion |
DING Kuankuan1, DING Jianxiang1,2( ), ZHANG Kaige1, BAI Zhongchen3, ZHANG Peigen2( ), SUN Zhengming1,2 |
1 School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, China 2 Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China 3 Guizhou Province Key Laboratory for Photoelectronic Technology and Application, Guizhou University, Guiyang 550025, China |
引用本文:
丁宽宽, 丁健翔, 张凯歌, 白忠臣, 张培根, 孙正明. 多场耦合侵蚀下环保Ag/Ti2SnC复合电接触材料的微/纳米力学行为及微结构演变[J]. 金属学报, 2024, 60(12): 1731-1745.
Kuankuan DING,
Jianxiang DING,
Kaige ZHANG,
Zhongchen BAI,
Peigen ZHANG,
Zhengming SUN.
Micro/Nano-Mechanical Behavior and Microstructure Evolution of Eco-Friendly Ag/Ti2SnC Composite Electrical Contacts Under Multi-Field Coupled Erosion[J]. Acta Metall Sin, 2024, 60(12): 1731-1745.
1 |
Pons F, Cherkaoui M, Ilali I, et al. Evolution of the AgCdO contact material surface microstructure with the number of arcs [J]. J. Electron. Mater., 2010, 39: 456
|
2 |
Teixeira F D S M, Peres A C D C, Gomes T S, et al. A review on the applicability of life cycle assessment to evaluate the technical and environmental properties of waste electrical and electronic equipment [J]. J. Polym. Environ., 2021, 29: 1333
|
3 |
Wang X H, Li G J, Zou J T, et al. Investigation on preparation, microstructure, and properties of AgTiB2 composite [J]. J. Compos. Mater., 2011, 45: 1285
|
4 |
Yang R, Liu S H, Cui H, et al. Quasi-continuous network structure greatly improved the anti-arc-erosion capability of Ag/Y2O3 electrical contacts [J]. Materials, 2022, 15: 2450
|
5 |
Barsoum M W. The MN + 1 AXN phases: A new class of solids: Thermodynamically stable nanolaminates [J]. Prog. Solid State Chem., 2000, 28: 201
|
6 |
Hu W Q, Huang Z Y, Wang Y B, et al. Layered ternary MAX phases and their MX particulate derivative reinforced metal matrix composite: A review [J]. J. Alloys Compd., 2021, 856: 157313
|
7 |
Zhou Y C, Xiang H M, Dai F Z. Y5Si3C and Y3Si2C2: Theoretically predicted MAX phase like damage tolerant ceramics and promising interphase materials for SiCf/SiC composites [J]. J. Mater. Sci. Technol., 2019, 35: 313
|
8 |
He H T, Jin S, Fan G X, et al. Synthesis mechanisms and thermal stability of ternary carbide Mo2Ga2C [J]. Ceram. Int., 2018, 44: 22289
|
9 |
Sun Z M. Progress in research and development on MAX phases: A family of layered ternary compounds [J]. Int. Mater. Rev., 2011, 56: 143
|
10 |
Ding J X, Tian W B, Wang D D, et al. Corrosion and degradation mechanism of Ag/Ti3AlC2 composites under dynamic electric arc discharge [J]. Corros. Sci., 2019, 156: 147
|
11 |
Ding J Y, Tian W B, Zhang P G, et al. Arc erosion behavior of Ag/Ti3AlC2 electrical contact materials [J]. J. Alloys Compd., 2018, 740: 669
|
12 |
Ding K K, Zhang K G, Ding J X, et al. Effect of Al atomic layer on the wetting behavior, interface structure and electrical contact properties of silver reinforced by Ti3AlC2 ceramic [J]. Ceram. Int., 2022, 48: 190
|
13 |
Liu M M, Chen J L, Cui H, et al. Temperature-driven deintercalation and structure evolution of Ag/Ti3AlC2 composites [J]. Ceram. Int., 2018, 44: 18129
|
14 |
Sun Z M, Ding J X, Zhang P G, et al. A preparation method for Ti SnC enhanced Ag-based electrical contact material [P]. Chin Pat, CN106119593A, 2016
|
14 |
孙正明, 丁健翔, 张培根 等. 一种Ti SnC增强Ag基电触头材料的制备方法 [P]. 中国专利, CN106119593A, 2016
|
15 |
Tian Z H, Zhang P G, Liu Y S, et al. Research progress and outlook of metal whisker spontaneous growth on MAX phase substrates [J]. Acta Metall. Sin., 2022, 58: 295
|
15 |
田志华, 张培根, 刘玉爽 等. MAX相表面金属晶须自发生长现象的研究现状与展望 [J]. 金属学报, 2022, 58: 295
doi: 10.11900/0412.1961.2021.00119
|
16 |
Huang X C, Feng Y, Qian G, et al. Influence of breakdown voltages on arc erosion of a Ti3AlC2 cathode in an air atmosphere [J]. Ceram. Int., 2017, 43: 10601
|
17 |
Liu M M, Chen J L, Cui H, et al. Ag/Ti3AlC2 composites with high hardness, high strength and high conductivity [J]. Mater. Lett., 2018, 213: 269
|
18 |
Wang D D, Tian W B, Ma A B, et al. Anisotropic properties of Ag/Ti3AlC2 electrical contact materials prepared by equal channel angular pressing [J]. J. Alloys Compd., 2019, 784: 431
|
19 |
Zhang M, Tian W B, Zhang P G, et al. Microstructure and properties of Ag-Ti3SiC2 contact materials prepared by pressureless sintering [J]. Int. J. Miner. Metall. Mater., 2018, 25: 810
|
20 |
Ding J X, Tian W B, Zhang P G, et al. Preparation and arc erosion properties of Ag/Ti2SnC composites under electric arc discharging [J]. J. Adv. Ceram., 2019, 8: 90
|
21 |
Ding J X, Huang P Y, Zha Y H, et al. High-purity Ti2AlC powder: Preparation and application in Ag-based electrical contact materials [J]. J. Inorg. Mater., 2020, 35: 729
|
21 |
丁健翔, 黄培艳, 查余辉 等. 高纯Ti2AlC粉末的无压制备及其在Ag基电触头材料的应用 [J]. 无机材料学报, 2020, 35: 729
doi: 10.15541/jim20190243
|
22 |
Huang X C, Feng Y, Qian G, et al. Erosion behavior of Ti3AlC2 cathode under atmosphere air arc [J]. J. Alloys Compd., 2017, 727: 419
|
23 |
Huang X C, Feng Y, Ge J L, et al. Arc erosion mechanism of Ag-Ti3SiC2 material [J]. J. Alloys Compd., 2020, 817: 152741
|
24 |
Ding J X, Tian W B, Wang D D, et al. Arc erosion and degradation mechanism of Ag/Ti2AlC composite [J]. Acta Metall. Sin., 2019, 55: 627
|
24 |
丁健翔, 田无边, 汪丹丹 等. Ag/Ti2AlC复合材料的电弧侵蚀及退化机理 [J]. 金属学报, 2019, 55: 627
doi: 10.11900/0412.1961.2018.00534
|
25 |
Ding J X, Tian W B, Wang D D, et al. Microstructure evolution, oxidation behavior and corrosion mechanism of Ag/Ti2SnC composite during dynamic electric arc discharging [J]. J. Alloys Compd., 2019, 785: 1086
|
26 |
Yılmaz E, Çakıroğlu B, Gökçe A, et al. Novel hydroxyapatite/graphene oxide/collagen bioactive composite coating on Ti16Nb alloys by electrodeposition [J]. Mater. Sci. Eng., 2019, C101: 292
|
27 |
Büor B, Giuntini D, Domènech B, et al. Nanoindentation-based study of the mechanical behavior of bulk supercrystalline ceramic-organic nanocomposites [J]. J. Eur. Ceram. Soc., 2019, 39: 3247
|
28 |
Hu C L, Yao S, Zou F B, et al. Insights into the influencing factors on the micro-mechanical properties of calcium-silicate-hydrate gel [J]. J. Am. Ceram. Soc., 2019, 102: 1942
|
29 |
Zhang J S, Liu X J, Cui H, et al. Mechanical properties around reinforce particles in metal matrix composites characterized by nanoindentation technique [J]. Acta Metall. Sin., 1997, 33: 548
|
29 |
张济山, 刘兴江, 崔 华 等. 金属基复合材料相界面区力学性能显微力学探针分析 [J]. 金属学报, 1997, 33: 548
|
30 |
Yazdani Z, Toroghinejad M R, Edris H. Effects of annealing on the fabrication of Al-TiAl3 nanocomposites before and after accumulative roll bonding and evaluation of strengthening mechanisms [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 636
|
31 |
Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. J. Mater. Res., 1992, 7: 1564
|
32 |
Huang C X, Lin W Q, Lai C H, et al. Coupling the post-extraction process to remove residual lignin and alter the recalcitrant structures for improving the enzymatic digestibility of acid-pretreated bamboo residues [J]. Bioresour. Technol., 2019, 285: 121355
|
33 |
Wang X, Guan R G, Shang Y Q, et al. Evolution of bonding interface in Al/Al-Mg-Si alloy clad wire during heating at 500oC [J]. Mater. Sci. Eng., 2017, A679: 538
|
34 |
Zhao Y H, Jing J H, Chen L W, et al. Current research status of interface of ceramic-metal laminated composite material for armor protection [J]. Acta Metall. Sin., 2021, 57: 1107
doi: 10.11900/0412.1961.2021.00051
|
34 |
赵宇宏, 景舰辉, 陈利文 等. 装甲防护陶瓷-金属叠层复合材料界面研究进展 [J]. 金属学报, 2021, 57: 1107
doi: 10.11900/0412.1961.2021.00051
|
35 |
Li S B, Bei G P, Chen X D, et al. Crack healing induced electrical and mechanical properties recovery in a Ti2SnC ceramic [J]. J. Eur. Ceram. Soc., 2016, 36: 25
|
36 |
Hoyaux M F. Arc Physics [M]. Springer Science & Business Media, 2013: 304
|
37 |
Wang J B, Zhang Y, Yang M G, et al. Observation of arc discharging process of nanocomposite Ag-SnO2 and La-doped Ag-SnO2 contact with a high-speed camera [J]. Mater. Sci. Eng., 2006, B131: 230
|
38 |
Gu L, Zhu Y M, He G J, et al. Coupled numerical simulation of arc plasma channel evolution and discharge crater formation in arc discharge machining [J]. Int. J. Heat Mass Transfer, 2019, 135: 674
|
39 |
Humenik M, Kingery W D. Metal-ceramic interactions: III, Surface tension and wettability of metal-ceramic systems [J]. J. Am. Ceram. Soc., 1954, 37: 18
|
40 |
Chen J X, Li J L, Zhou Y C. In-situ synthesis of Ti3AlC2/TiC-Al2O3 composite from TiO2-Al-C system [J]. J. Mater. Sci. Technol., 2006, 22: 455
|
41 |
Kumashiro Y, Itoh A, Kinoshita T, et al. The micro-Vickers hardness of TiC single crystals up to 1500oC [J]. J. Mater. Sci., 1977, 12: 595
|
42 |
Zhao J H, Liu J, Li N, et al. Highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous Fe3O4-MnO2: Adsorption behavior and process study [J]. Chem. Eng. J., 2016, 304: 737
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|