|
|
微纳米Ti2AlC增强TiAl复合材料高温强韧化机制 |
陈占兴1, 王玉鹏2, 荣光飞2, 张新房1, 马腾飞2( ), 王晓红2, 邢秋玮1, 朱冬冬2( ) |
1 郑州航空工业管理学院 材料科学与工程学院 郑州 450046 2 衢州学院 浙江省空气动力装备技术重点实验室 衢州 324000 |
|
High-Temperature Strengthening and Toughening Mechanisms of Micro-Nano Ti2AlC Reinforced TiAl Composites |
CHEN Zhanxing1, WANG Yupeng2, RONG Guangfei2, ZHANG Xinfang1, MA Tengfei2( ), WANG Xiaohong2, XING Qiuwei1, ZHU Dongdong2( ) |
1 School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China 2 Key Laboratory of Air-Driven Equipment Technology of Zhejiang Province, Quzhou University, Quzhou 324000, China |
引用本文:
陈占兴, 王玉鹏, 荣光飞, 张新房, 马腾飞, 王晓红, 邢秋玮, 朱冬冬. 微纳米Ti2AlC增强TiAl复合材料高温强韧化机制[J]. 金属学报, 2024, 60(12): 1746-1754.
Zhanxing CHEN,
Yupeng WANG,
Guangfei RONG,
Xinfang ZHANG,
Tengfei MA,
Xiaohong WANG,
Qiuwei XING,
Dongdong ZHU.
High-Temperature Strengthening and Toughening Mechanisms of Micro-Nano Ti2AlC Reinforced TiAl Composites[J]. Acta Metall Sin, 2024, 60(12): 1746-1754.
1 |
Chen R, Wang S, An Q, et al. Effect of hot extrusion and heat treatment on the microstructure and tensile properties of network structured TiBw/TC18 composites [J]. Acta Metall. Sin., 2022, 58: 1478
doi: 10.11900/0412.1961.2022.00187
|
1 |
陈 润, 王 帅, 安 琦 等. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响 [J]. 金属学报, 2022, 58: 1478
|
2 |
Huo W T, Lei C X, Du Y, et al. Superior strength-ductility synergy of (TiC + Ti5Si3)/Ti composites with nacre-inspired architecture [J]. Composites, 2022, 240B: 109991
|
3 |
Jiao Z X, Wang Q Z, Yin F X, et al. Novel laminated multi-layer graphene/Cu-Al-Mn composites with ultrahigh damping capacity and superior tensile mechanical properties [J]. Carbon, 2022, 188: 45
|
4 |
Liu Y, Dong L L, Lu J W, et al. Microstructure and mechanical properties of SiC nanowires reinforced titanium matrix composites [J]. J. Alloys Compd., 2020, 819: 152953
|
5 |
Huang L J, An Q, Geng L, et al. Multiscale architecture and superior high-temperature performance of discontinuously reinforced titanium matrix composites [J]. Adv. Mater., 2021, 33: 2000688
|
6 |
Yang J R, Chen R R, Su Y Q, et al. Optimization of electromagnetic energy in cold crucible used for directional solidification of TiAl alloy [J]. Energy, 2018, 161: 143
|
7 |
Yang J R, Gao Z T, Zhang X G, et al. Continuous-cooling-transformation (CCT) behaviors and fine-grained nearly lamellar (FGNL) microstructure formation in a cast Ti-48Al-4Nb-2Cr Alloy [J]. Metall. Mater. Trans., 2020, 51A: 5285
|
8 |
Liu P, Hou B, Wang A Q, et al. Balancing the strength and ductility of Ti2AlC/TiAl composite with a bioinspired micro-nano laminated architecture [J]. Mater. Des., 2022, 220: 110851
|
9 |
Chen Y Y, Niu H Z, Tian J, et al. Research progress of particulates reinforced TiAl based composites [J]. Rare Met. Mater. Eng., 2011, 40: 2060
|
9 |
陈玉勇, 牛红志, 田 竟 等. 颗粒增强TiAl基复合材料的研究进展 [J]. 稀有金属材料与工程, 2011, 40: 2060
|
10 |
Fang H Z, Wang S, Chen R R, et al. The effects of the formation of a multi-scale reinforcing phase on the microstructure evolution and mechanical properties of a Ti2AlC/TiAl alloy [J]. Nanoscale, 2021, 13: 12565
|
11 |
Shen Y Y, Zhang G X, Jia Q, et al. Interfacial reaction and thermal stability of the SiCf/TiAl composites [J]. Acta Metall. Sin., 2022, 58: 1150
|
11 |
沈莹莹, 张国兴, 贾 清 等. SiCf/TiAl复合材料界面反应及热稳定性 [J]. 金属学报, 2022, 58: 1150
doi: 10.11900/0412.1961.2021.00076
|
12 |
Guo Y F, Xiao S L, Chen Y Y, et al. High temperature tensile properties and fracture behavior of Y2O3-bearing Ti-48Al-2Cr-2Nb alloy [J]. Intermetallics, 2020, 126: 106933
|
13 |
Liu C Z, Wang Y P, Han W Z, et al. Achieving superior high-temperature strength and oxidation resistance of TiAl nanocomposite through in situ semicoherent MAX phase precipitation [J]. ACS Appl. Mater. Interfaces, 2022, 14: 8394
|
14 |
Ma T F, Li Q Y, Wang Y P, et al. Microstructure and mechanical properties of micro-nano Ti2AlC-reinforced TiAl composites [J]. Intermetallics, 2022, 146: 107563
|
15 |
Wang Y P, Liu C Z, Ma T F, et al. Improvement in oxidation resistance of TiAl alloys by in-situ precipitation of Ti2AlC at the interface of α2 and γ lamellae [J]. Corros. Sci., 2022, 208: 110639
|
16 |
Zhou H T, Su Y J, Liu N, et al. Modification of microstructure and properties of Ti-47Al-2Cr-4Nb-0.3W alloys fabricated by SPS with trace multilayer graphene addition [J]. Mater. Charact., 2018, 138: 1
|
17 |
Chen R R, Fang H Z, Chen X Y, et al. Formation of TiC/Ti2AlC and α2 + γ in in-situ TiAl composites with different solidification paths [J]. Intermetallics, 2017, 81: 9
|
18 |
Cheng J, Zhu S Y, Yu Y, et al. Microstructure, mechanical and tribological properties of TiAl-based composites reinforced with high volume fraction of nearly network Ti2AlC particulates [J]. J. Mater. Sci. Technol., 2018, 34: 670
doi: 10.1016/j.jmst.2017.09.007
|
19 |
Wu Z W, Hu R, Zhang T B, et al. Understanding the role of carbon atoms on microstructure and phase transformation of high Nb containing TiAl alloys [J]. Mater. Charact., 2017, 124: 1
|
20 |
Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
doi: 10.1126/science.1159610
pmid: 19372422
|
21 |
Guo Y F, Chen Y Y, Xiao S L, et al. Influence of nano-Y2O3 addition on microstructure and tensile properties of high-Al TiAl alloys [J]. Mater. Sci. Eng., 2020, A794: 139803
|
22 |
Lin B C, Chen W, Yang Y, et al. Anisotropy of microstructure and tensile properties of Ti-48Al-2Cr-2Nb fabricated by electron beam melting [J]. J. Alloys Compd., 2020, 830: 154684
|
23 |
Biamino S, Penna A, Ackelid U, et al. Electron beam melting of Ti-48Al-2Cr-2Nb alloy: Microstructure and mechanical properties investigation [J]. Intermetallics, 2011, 19: 776
|
24 |
Wang J W, Luo Q, Wang H M, et al. Microstructure characteristics and failure mechanisms of Ti-48Al-2Nb-2Cr titanium aluminide intermetallic alloy fabricated by directed energy deposition technique [J]. Addit. Manuf., 2020, 32: 101007
|
25 |
Liu Z Q, Wang C Y, Wang W B, et al. Effects of Tantalum on the microstructure and properties of Ti-48Al-2Cr-2Nb alloy fabricated via laser additive manufacturing [J]. Mater. Charact., 2021, 179: 111317
|
26 |
Han J C, Dong J, Zhang S Z, et al. Microstructure evolution and tensile properties of conventional cast TiAl-based alloy with trace Ni addition [J]. Mater. Sci. Eng., 2018, A715: 41
|
27 |
Zhou W L, Shen C, Hua X M, et al. Twin-wire directed energy deposition-arc of Ti-48Al-2Cr-2Nb alloy: Feasibility, microstructure, and tensile property investigation [J]. Mater. Sci. Eng., 2022, A850: 143566
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|