Please wait a minute...
金属学报  2024, Vol. 60 Issue (12): 1746-1754    DOI: 10.11900/0412.1961.2023.00067
  研究论文 本期目录 | 过刊浏览 |
微纳米Ti2AlC增强TiAl复合材料高温强韧化机制
陈占兴1, 王玉鹏2, 荣光飞2, 张新房1, 马腾飞2(), 王晓红2, 邢秋玮1, 朱冬冬2()
1 郑州航空工业管理学院 材料科学与工程学院 郑州 450046
2 衢州学院 浙江省空气动力装备技术重点实验室 衢州 324000
High-Temperature Strengthening and Toughening Mechanisms of Micro-Nano Ti2AlC Reinforced TiAl Composites
CHEN Zhanxing1, WANG Yupeng2, RONG Guangfei2, ZHANG Xinfang1, MA Tengfei2(), WANG Xiaohong2, XING Qiuwei1, ZHU Dongdong2()
1 School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
2 Key Laboratory of Air-Driven Equipment Technology of Zhejiang Province, Quzhou University, Quzhou 324000, China
引用本文:

陈占兴, 王玉鹏, 荣光飞, 张新房, 马腾飞, 王晓红, 邢秋玮, 朱冬冬. 微纳米Ti2AlC增强TiAl复合材料高温强韧化机制[J]. 金属学报, 2024, 60(12): 1746-1754.
Zhanxing CHEN, Yupeng WANG, Guangfei RONG, Xinfang ZHANG, Tengfei MA, Xiaohong WANG, Qiuwei XING, Dongdong ZHU. High-Temperature Strengthening and Toughening Mechanisms of Micro-Nano Ti2AlC Reinforced TiAl Composites[J]. Acta Metall Sin, 2024, 60(12): 1746-1754.

全文: PDF(3561 KB)   HTML
摘要: 

微纳米颗粒增强TiAl复合材料拉伸行为的研究较少,且微纳米颗粒在高温下对TiAl复合材料断裂行为的影响仍不清晰,因此有必要研究微纳米Ti2AlC颗粒增强TiAl复合材料的高温强韧化机制。本工作利用放电等离子烧结(SPS)技术原位合成微纳米Ti2AlC颗粒增强TiAl复合材料,通过控制烧结温度,分别获得近片层、细小全片层和粗大全片层组织的Ti2AlC/TiAl复合材料。分别在800和850℃、应变速率0.0001 s-1条件下研究了Ti2AlC/TiAl复合材料的高温拉伸性能及相应的强韧化机制。结果表明,微纳米尺度Ti2AlC颗粒增强的近片层、细小全片层TiAl复合材料具有良好的强塑性,细小全片层Ti2AlC/TiAl复合材料在850℃、0.0001 s-1变形条件下的抗拉强度和断裂应变分别达到496 MPa和10.7%,较全片层Ti-48Al-2Nb-2Cr合金(800℃、0.0001 s-1变形条件下抗拉强度467 MPa,断裂应变4.5%)使用温度提升50℃。Ti2AlC/TiAl复合材料的强韧化机制主要为微纳米Ti2AlC颗粒细化烧结组织、阻碍位错运动、促进孪晶形成、阻碍裂纹扩展,从而提高复合材料强度和塑性。

关键词 颗粒增强TiAl复合材料放电等离子烧结(SPS)强韧化机制    
Abstract

Metal matrix composites reinforced with micro-nano particles have emerged as a promising avenue for the development of advanced structural materials. Such composites can considerably enhance the strength and toughness of metals. TiAl composites with reinforced micro-nano Ti2AlC particles exhibit excellent mechanical properties at room temperature and impressive oxidation resistance at high temperatures. However, there is limited study on the tensile behavior of micro-nano particles reinforced TiAl composites. The impact of micro-nano particles on the tensile fracture of TiAl composites at high temperatures remains largely unexplored; hence, it is crucial to investigate the high-temperature strengthening and toughening mechanisms of micro-nano Ti2AlC particles reinforced TiAl composites. In this study, micro-nano Ti2AlC particles reinforced TiAl composites were in situ synthesized by spark plasma sintering (SPS) at 1250-1350oC using Ti-48Al-2Nb-2Cr prealloyed powders with addition of 0.5% graphene oxide. With increase in sintering temperature, various microstructures of Ti2AlC/TiAl composites were observed, ranging from near fully lamellar to coarse fully lamellar. The high-temperature tensile properties of these composites with varying microstructures at 800 and 850oC at a strain rate of 0.0001 s-1 were systematically studied. The corresponding strengthening and toughening mechanisms were discussed based on the observed fracture morphologies. The findings revealed that the composites reinforced with micro-nano Ti2AlC particles, especially those with near and fine fully lamellar structures, exhibited a synergy between strength and ductility at high temperatures. For instance, the fine fully lamellar Ti2AlC/TiAl composite displayed ultimate tensile strength of 496 MPa and a fracture strain of 10.7% at 850oC and 0.0001 s-1. This represents a 50oC increase in working temperature compared to that of the fully lamellar Ti-48Al-2Nb-2Cr alloy (The ultimate tensile strength and fracture strain at 800oC and 0.0001 s-1 were 467 MPa and 4.5%, respectively). The enhanced high-temperature properties of the Ti2AlC/TiAl composites were primarily attributed to the micro-nano Ti2AlC particles, which refined the lamellar colonies and hindered dislocation movement and crack propagation.

Key wordsparticle reinforced TiAl composites    spark plasma sintering (SPS)    strengthening and toughening mechanisms
收稿日期: 2023-02-18     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(52001262);国家自然科学基金项目(52001283);国家自然科学基金项目(52171120);河南省科技攻关项目(212102210447);河南省科技攻关项目(222102230041)
通讯作者: 马腾飞,matengfeihit@163.com,主要从事TiAl合金组织与性能调控研究;
朱冬冬,zhudd8@163.com,主要从事TiAl合金凝固组织与性能研究
Corresponding author: MA Tengfei, associate professor, Tel: (0571)8026716, E-mail: matengfeihit@163.com;
ZHU Dongdong, professor, Tel: (0570)80266634, E-mail: zhudd8@163.com
作者简介: 陈占兴,男,1985年生,博士
图1  1300℃烧结TiAl合金及不同温度烧结添加0.5%氧化石墨烯(GO)的Ti2AlC颗粒增强TiAl复合材料微观组织的OM像
图2  1300℃烧结TiAl合金及不同温度烧结添加0.5%GO的Ti2AlC颗粒增强TiAl复合材料微观组织的SEM像
图3  1300℃烧结添加不同含量GO的Ti2AlC颗粒增强TiAl复合材料的Raman光谱
图4  1300℃烧结添加0.5%GO的Ti2AlC颗粒增强TiAl复合材料的TEM表征
图5  1300℃烧结TiAl合金及不同温度烧结添加0.5%GO的Ti2AlC颗粒增强TiAl复合材料的片层团尺寸及片层间距的统计结果
图6  1300℃烧结TiAl合金及不同温度烧结添加0.5%GO的Ti2AlC颗粒增强TiAl复合材料的高温拉伸工程应力-应变曲线
Alloy

Ts

oC

T

oC

UTS

MPa

εf

%

TiAl alloy13008004674.5
85040418.6
Ti2AlC/TiAl12508004923.5
8504628.1
Ti2AlC/TiAl13008005303.7
85049610.7
Ti2AlC/TiAl13508003731.6
8503712.1
表1  1300℃烧结TiAl合金及不同温度烧结添加0.5%GO的Ti2AlC颗粒增强TiAl复合材料高温拉伸性能
图7  1300℃烧结TiAl合金及添加0.5%GO的Ti2AlC颗粒增强TiAl复合材料高温拉伸断口形貌的SEM像
图8  1300℃烧结的TiAl合金高温拉伸断口附近变形组织的SEM像
图9  1300℃烧结添加0.5%GO的Ti2AlC颗粒增强TiAl复合材料高温拉伸断口附近变形组织的SEM像
1 Chen R, Wang S, An Q, et al. Effect of hot extrusion and heat treatment on the microstructure and tensile properties of network structured TiBw/TC18 composites [J]. Acta Metall. Sin., 2022, 58: 1478
doi: 10.11900/0412.1961.2022.00187
1 陈 润, 王 帅, 安 琦 等. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响 [J]. 金属学报, 2022, 58: 1478
2 Huo W T, Lei C X, Du Y, et al. Superior strength-ductility synergy of (TiC + Ti5Si3)/Ti composites with nacre-inspired architecture [J]. Composites, 2022, 240B: 109991
3 Jiao Z X, Wang Q Z, Yin F X, et al. Novel laminated multi-layer graphene/Cu-Al-Mn composites with ultrahigh damping capacity and superior tensile mechanical properties [J]. Carbon, 2022, 188: 45
4 Liu Y, Dong L L, Lu J W, et al. Microstructure and mechanical properties of SiC nanowires reinforced titanium matrix composites [J]. J. Alloys Compd., 2020, 819: 152953
5 Huang L J, An Q, Geng L, et al. Multiscale architecture and superior high-temperature performance of discontinuously reinforced titanium matrix composites [J]. Adv. Mater., 2021, 33: 2000688
6 Yang J R, Chen R R, Su Y Q, et al. Optimization of electromagnetic energy in cold crucible used for directional solidification of TiAl alloy [J]. Energy, 2018, 161: 143
7 Yang J R, Gao Z T, Zhang X G, et al. Continuous-cooling-transformation (CCT) behaviors and fine-grained nearly lamellar (FGNL) microstructure formation in a cast Ti-48Al-4Nb-2Cr Alloy [J]. Metall. Mater. Trans., 2020, 51A: 5285
8 Liu P, Hou B, Wang A Q, et al. Balancing the strength and ductility of Ti2AlC/TiAl composite with a bioinspired micro-nano laminated architecture [J]. Mater. Des., 2022, 220: 110851
9 Chen Y Y, Niu H Z, Tian J, et al. Research progress of particulates reinforced TiAl based composites [J]. Rare Met. Mater. Eng., 2011, 40: 2060
9 陈玉勇, 牛红志, 田 竟 等. 颗粒增强TiAl基复合材料的研究进展 [J]. 稀有金属材料与工程, 2011, 40: 2060
10 Fang H Z, Wang S, Chen R R, et al. The effects of the formation of a multi-scale reinforcing phase on the microstructure evolution and mechanical properties of a Ti2AlC/TiAl alloy [J]. Nanoscale, 2021, 13: 12565
11 Shen Y Y, Zhang G X, Jia Q, et al. Interfacial reaction and thermal stability of the SiCf/TiAl composites [J]. Acta Metall. Sin., 2022, 58: 1150
11 沈莹莹, 张国兴, 贾 清 等. SiCf/TiAl复合材料界面反应及热稳定性 [J]. 金属学报, 2022, 58: 1150
doi: 10.11900/0412.1961.2021.00076
12 Guo Y F, Xiao S L, Chen Y Y, et al. High temperature tensile properties and fracture behavior of Y2O3-bearing Ti-48Al-2Cr-2Nb alloy [J]. Intermetallics, 2020, 126: 106933
13 Liu C Z, Wang Y P, Han W Z, et al. Achieving superior high-temperature strength and oxidation resistance of TiAl nanocomposite through in situ semicoherent MAX phase precipitation [J]. ACS Appl. Mater. Interfaces, 2022, 14: 8394
14 Ma T F, Li Q Y, Wang Y P, et al. Microstructure and mechanical properties of micro-nano Ti2AlC-reinforced TiAl composites [J]. Intermetallics, 2022, 146: 107563
15 Wang Y P, Liu C Z, Ma T F, et al. Improvement in oxidation resistance of TiAl alloys by in-situ precipitation of Ti2AlC at the interface of α2 and γ lamellae [J]. Corros. Sci., 2022, 208: 110639
16 Zhou H T, Su Y J, Liu N, et al. Modification of microstructure and properties of Ti-47Al-2Cr-4Nb-0.3W alloys fabricated by SPS with trace multilayer graphene addition [J]. Mater. Charact., 2018, 138: 1
17 Chen R R, Fang H Z, Chen X Y, et al. Formation of TiC/Ti2AlC and α2 + γ in in-situ TiAl composites with different solidification paths [J]. Intermetallics, 2017, 81: 9
18 Cheng J, Zhu S Y, Yu Y, et al. Microstructure, mechanical and tribological properties of TiAl-based composites reinforced with high volume fraction of nearly network Ti2AlC particulates [J]. J. Mater. Sci. Technol., 2018, 34: 670
doi: 10.1016/j.jmst.2017.09.007
19 Wu Z W, Hu R, Zhang T B, et al. Understanding the role of carbon atoms on microstructure and phase transformation of high Nb containing TiAl alloys [J]. Mater. Charact., 2017, 124: 1
20 Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
doi: 10.1126/science.1159610 pmid: 19372422
21 Guo Y F, Chen Y Y, Xiao S L, et al. Influence of nano-Y2O3 addition on microstructure and tensile properties of high-Al TiAl alloys [J]. Mater. Sci. Eng., 2020, A794: 139803
22 Lin B C, Chen W, Yang Y, et al. Anisotropy of microstructure and tensile properties of Ti-48Al-2Cr-2Nb fabricated by electron beam melting [J]. J. Alloys Compd., 2020, 830: 154684
23 Biamino S, Penna A, Ackelid U, et al. Electron beam melting of Ti-48Al-2Cr-2Nb alloy: Microstructure and mechanical properties investigation [J]. Intermetallics, 2011, 19: 776
24 Wang J W, Luo Q, Wang H M, et al. Microstructure characteristics and failure mechanisms of Ti-48Al-2Nb-2Cr titanium aluminide intermetallic alloy fabricated by directed energy deposition technique [J]. Addit. Manuf., 2020, 32: 101007
25 Liu Z Q, Wang C Y, Wang W B, et al. Effects of Tantalum on the microstructure and properties of Ti-48Al-2Cr-2Nb alloy fabricated via laser additive manufacturing [J]. Mater. Charact., 2021, 179: 111317
26 Han J C, Dong J, Zhang S Z, et al. Microstructure evolution and tensile properties of conventional cast TiAl-based alloy with trace Ni addition [J]. Mater. Sci. Eng., 2018, A715: 41
27 Zhou W L, Shen C, Hua X M, et al. Twin-wire directed energy deposition-arc of Ti-48Al-2Cr-2Nb alloy: Feasibility, microstructure, and tensile property investigation [J]. Mater. Sci. Eng., 2022, A850: 143566
[1] 王晓军, 向烨阳, 胡小石, 吴昆. 碳纳米材料增强镁基复合材料研究进展[J]. 金属学报, 2019, 55(1): 73-86.
[2] 潘昆明,张来启,魏世忠,李继文,李豪,林均品. Mo-Si-B三元系中T2相合金的制备工艺研究*[J]. 金属学报, 2015, 51(11): 1377-1383.
[3] 赵世贤 宋晓艳 王明胜 魏崇斌 张久兴 刘雪梅. WC/Co粉体粒径匹配与放电等离子烧结致密化[J]. 金属学报, 2009, 45(4): 497-502.