Please wait a minute...
金属学报  2011, Vol. 47 Issue (12): 1605-1610    DOI: 10.3724/SP.J.1037.2011.00544
  论文 本期目录 | 过刊浏览 |
350 ℃中温段SmCo永磁材料的研究
王倩,蒋成保
北京航空航天大学材料科学与工程学院, 北京 100191
STUDY ON SmCo PERMANENT MAGNETS UNDER 350℃ MODERATE TEMPERATURES
WANG Qian, JIANG Chengbao
School of Materials Science and Engineering, Beihang University, Beijing 100191
引用本文:

王倩 蒋成保. 350 ℃中温段SmCo永磁材料的研究[J]. 金属学报, 2011, 47(12): 1605-1610.
, . STUDY ON SmCo PERMANENT MAGNETS UNDER 350℃ MODERATE TEMPERATURES[J]. Acta Metall Sin, 2011, 47(12): 1605-1610.

全文: PDF(565 KB)  
摘要: 较系统地研究了Fe和Cu含量对Sm(CobalFexCuyZr0.03)7.5(x=0.16-0.28, y=0.06, 0.08)磁体的室温和中温段磁性能的影响. 研究表明,室温下内禀矫顽力iHc随Fe含量的增加先增大后减小,最高可以达到2473 kA/m;剩磁Br随Fe含量的增加而增大. 在相同Fe含量的情况下, 随Cu含量增加内禀矫顽力iHc均增大. 矫顽力温度系数的绝对值|β|随Fe含量的增加单调增大,随Cu含量的增加而降低.
关键词 2∶17型SmCo永磁材料 中温段磁体 矫顽力 磁性能    
Abstract:The magnetic properties of commercial 2∶17–type SmCo magnet is low at high temperature, despite good properties at room temperature and its application temperature is usually lower than 300 ℃. In recent years, significant progress has been made on the development of SmCo permanent magnets for high temperature applications. Despite the maximum operating temperature being up to 500 ℃, the magnets were found to have low magnetic properties at room temperature and 350 ℃. Thus, there has been a demand for developing permanent magnet materials with high properties at moderate temperatures below 350 ℃. The effect of Fe and Cu contents on the magnetic properties of Sm(CobalFexCuyZr0.03)7.5 (x=0.16—0.28, y=0.06, 0.08) magnets at room temperature and 350 ℃ have been systematically studied. The results show that with increasing Fe content, the intrinsic coercivity iHc gradually increases, reaching an optimal value of 2473 kA/m, and then drops rapidly at room temperature; the remanence Br rises monotonically with increasing Fe content. The intrinsic coercivity iHc increases with raising Cu at a constant Fe content. The absolute value of temperature coefficient of coercivity |β| rises monotonically with increasing Fe content, and decreases with increasing Cu content. Sm(CobalFe0.20Cu0.08Zr0.03)7.5 alloy is expected for potential applications at moderate temperatures below 350 ℃.
Key words2∶17–type SmCo permanent magnet    moderate temperature magnet    coercivity    magnetic property
收稿日期: 2011-08-29     
ZTFLH: 

TM273

 
基金资助:

国家自然科学基金项目 51071010, 国家高技术研究发展计划项目2010AA03A401, 航空自然科学基金项目 2009ZF51063和中央高校基本科研业务费专项资金资助

作者简介: 王倩, 女, 1987年生, 硕士生
[1] Zhou S Z. Rare Earth Permanent Magnetic Materials and Their Application. Beijing: Metallurgy Industry Press, 1995: 281

(周寿增. 稀土永磁材料及其应用. 北京: 冶金工业出版社, 1995: 281)

[2] Liu J F, Ding Y, Zhang Y, Dimitar D, Zhang F, Hadjipanayis G C. J Appl Phys, 1999; 85: 5660

[3] Tang W, Zhang Y, Gabay A M. J Magn Magn Mater, 2002; 242: 1335

[4] Yao Z, Jiang C B. IEEE Trans Magn, 2008; 44: 4578

[5] Yao Z, Li P P, Jiang C B. J Magn Magn Mater, 2009; 321: 203

[6] Hadjipanayis G C, Tang W, Zhang Y, Chui S T, Liu J F, Chen C, Kronmuller H. IEEE Trans Magn, 2000; 36: 3382

[7] Rabenberg L, Mishra R K, Thomas G. J Appl Phys, 1982; 53: 2389

[8] Raja K, Mishra, Thomas G. J Appl Phys, 1981; 52: 2517

[9] Tang W, Zhang Y, Hadjipanayis G C. J Magn Magn Mater, 2000; 221: 268

[10] Rong C B, Zhang H W, Zhang J, Du X B, Zhang S Y, Shen B G. J Appl Phys, 2004; 95: 1351

[11] Liu L L, Jiang C B. Appl Phys Lett, 2011; 98: 252504

[12] Chen Y Y, Hsieh C C, Lo S C, Chang W C, Chang H W, Chiou S H. J Appl Phys, 2011; 109: 07A748

[13] Feng H B, Chen H S, Guo Z H, Pan W, Zhu M G, Li W. J Appl Phys, 2011; 109: 07A763

[14] Peng L, Yang Q H, Zhang H W, Xu G L, Zhang M, Wang J D. J Rare Earths, 2008; 26: 378

[15] Guo Z H, Li W. Acta Metall Sin, 2002; 38: 866

(郭朝晖, 李卫. 金属学报. 2002; 38: 866)

[16] Liu J F, Ding Y, Hadjipanayis G C. J Appl Phys, 1999; 85: 1670

[17] Liu J F, Zhang Y, Dimitrov D, Hadjipanayis G C. J Appl Phys, 1999; 85: 2800

[18] Chui S T. J Magn Magn Mater, 2000; 217: 120

[19] Jiang C B, Feng G, Xu H B. Appl Phys Lett, 2002; 80: 1619

[20] Jiang C B, Liang T, Xu H B. Appl Phys Lett, 2002; 81: 2618

[21] Zhang Y, Tang W, Hadjipanayis G C. IEEE Trans Magn, 2001; 37: 2525

[22] Gutfleisch O, Muller K H, Khlopkov K, Wolf M, Yan A, Schafer R, Gemming T, Schultz L. Acta Mater, 2006; 54: 997

[23] Andrew S K. J Appl Phys, 1997; 81: 5609

[24] Liu S, Ray A E. IEEE Trans Magn, 1989; 25: 3785

[25] Li L Y, Yi J H, Huang B Y, Peng Y D. Acta Metall Sin, 2005; 41: 791

(李丽娅, 易健宏, 黄伯云, 彭元东. 金属学报. 2005; 41: 791)
[1] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[2] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[3] 郭璐, 朱乾科, 陈哲, 张克维, 姜勇. Fe76Ga5Ge5B6P7Cu1 合金的非等温晶化动力学[J]. 金属学报, 2022, 58(6): 799-806.
[4] 项兆龙, 张林, XIN Yan, 安佰灵, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, 王恩刚. Cr含量对FeCrCoSi永磁合金调幅分解组织及其性能的影响[J]. 金属学报, 2022, 58(1): 103-113.
[5] 刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57(9): 1155-1170.
[6] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[7] 白静, 石少锋, 王锦龙, 王帅, 赵骧. Ni-Mn-Ga-Ti铁磁形状记忆合金的相稳定性和磁性能的第一性原理计算[J]. 金属学报, 2019, 55(3): 369-375.
[8] 孙亚超, 朱明刚, 韩瑞, 石晓宁, 俞能君, 宋利伟, 李卫. 各向异性稀土永磁薄膜的磁黏滞性[J]. 金属学报, 2018, 54(3): 457-462.
[9] 黄俊, 罗海文. 退火工艺对含Nb高强无取向硅钢组织及性能的影响[J]. 金属学报, 2018, 54(3): 377-384.
[10] 耿遥祥,林鑫,羌建兵,王英敏,董闯. Finemet型纳米晶软磁合金的双团簇特征与成分优化[J]. 金属学报, 2017, 53(7): 833-841.
[11] 巩劭廷, 蒋成保, 张天丽. Fe对SmCo基高温永磁体微观结构及矫顽力的影响[J]. 金属学报, 2017, 53(6): 726-732.
[12] 马殿国,王英敏,李艳辉,张伟. Co含量对熔体快淬Fe55-xCoxPt15B30合金的组织结构与磁性能的影响[J]. 金属学报, 2017, 53(5): 609-614.
[13] 耿遥祥,张志杰,王英敏,羌建兵,董闯,汪海斌,特古斯. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53(3): 369-375.
[14] 白静,李泽,万震,赵骧. Ni-Mn-Ga-Cu铁磁形状记忆合金的晶体结构、相稳定性和磁性能的第一性原理研究[J]. 金属学报, 2017, 53(1): 83-89.
[15] 耿遥祥,王英敏,羌建兵,董闯,汪海斌,特古斯. Fe-B-Si-Nb块体非晶合金的成分设计与优化*[J]. 金属学报, 2016, 52(11): 1459-1466.