Please wait a minute...
金属学报  2024, Vol. 60 Issue (10): 1329-1344    DOI: 10.11900/0412.1961.2024.00192
  综述 本期目录 | 过刊浏览 |
机器学习分子动力学辅助材料凝固形核研究进展
陈名毅1,2, 胡俊伟1,2, 余耀辰1,2, 牛海洋1,2()
1 西北工业大学 凝固技术国家重点实验室 西安 710072
2 西北工业大学 材料学院 西安 710072
Advances in Machine Learning Molecular Dynamics to Assist Materials Nucleation and Solidification Research
CHEN Mingyi1,2, HU Junwei1,2, YU Yaochen1,2, NIU Haiyang1,2()
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2 School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

陈名毅, 胡俊伟, 余耀辰, 牛海洋. 机器学习分子动力学辅助材料凝固形核研究进展[J]. 金属学报, 2024, 60(10): 1329-1344.
Mingyi CHEN, Junwei HU, Yaochen YU, Haiyang NIU. Advances in Machine Learning Molecular Dynamics to Assist Materials Nucleation and Solidification Research[J]. Acta Metall Sin, 2024, 60(10): 1329-1344.

全文: PDF(2404 KB)   HTML
摘要: 

凝固形核是材料科学、凝聚态物理等领域长盛不衰的研究热点。分子动力学以及增强采样方法为从原子尺度原位观察凝固过程微观机理、解析相变热力学与动力学性质提供了有力手段。近年来,该领域的研究者们开发了一些融合机器学习技术的先进分子动力学模拟新方法,在多种体系的形核研究中取得了一定成果。本文首先回顾了凝固形核的基本理论,并从势函数、增强采样、形核序参量3个方面介绍凝固形核模拟研究中的常用方法以及机器学习技术在其中的应用。然后,选取了几个具有代表性的体系并介绍相关方法的实际应用。最后,对机器学习分子动力学辅助材料凝固形核模拟研究领域进行了总结与展望。

关键词 凝固形核相变机器学习分子动力学增强采样    
Abstract

Solidification nucleation is an everlasting research topic in the fields of materials science and condensed matter physics. Molecular dynamics (MD) and enhanced sampling methods provide a powerful means to observe the microscopic mechanisms of solidification processes in situ at the atomic level and to analyze the thermodynamic and kinetic properties of phase transitions. Recent advancements in MD simulations, particularly those incorporating machine learning (ML) techniques, have remarkably advanced our understanding of nucleation across different systems. This paper first reviews the basic theory of solidification nucleation and introduces common methods used in solidification nucleation simulation studies. It then delves into the application of ML techniques in three key areas: force fields, enhanced sampling, and order parameters. The paper further highlights several representative systems to demonstrate the practical applications of these methods. Finally, a summary and outlook on the future of ML-assisted MD simulations for studying material solidification were provided.

Key wordssolidification    nucleation    phase transition    machine learning    molecular dynamics    enhanced sampling
收稿日期: 2024-06-05     
ZTFLH:  TG111.4  
基金资助:国家自然科学基金项目(92370118,22003050);国家自然科学基金优秀青年科学基金项目(海外),及凝固技术国家重点实验室课题(2024-ZD-01)
通讯作者: 牛海洋,haiyang.niu@nwpu.edu.cn,主要从事材料相变的多尺度计算模拟、先进分子动力学方法开发、人工智能辅助的计算材料设计
Corresponding author: NIU Haiyang, professor, Tel: (029)88495240, E-mail: haiyang.niu@nwpu.edu.cn
作者简介: 陈名毅,男,1999年生,博士生
图1  机器学习势函数原理示意图
图2  机器学习方法辅助形核序参量设计[75,77]
图3  CdSe结晶机制的研究[69]
图4  Si的凝固形核过程模拟研究[66]
图5  第一性原理精度的水均质形核过程分子动力学模拟[91]
图6  Ga的凝固行为研究[98]
图7  碳酸钙球霰石相的晶体结构解析[102]
1 Alder B J. Studies in molecular dynamics. III. A mixture of hard spheres [J]. J. Chem. Phys., 1964, 40: 2724
2 Alder B J, Wainwright T E. Studies in molecular dynamics. I. General method [J]. J. Chem. Phys., 1959, 31: 459
3 Alder B J, Wainwright T E. Phase transition for a hard sphere system [J]. J. Chem. Phys., 1957, 27: 1208
4 Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory [J]. Phys. Rev. Lett., 1985, 55: 2471
pmid: 10032153
5 Blank T B, Brown S D, Calhoun A W, et al. Neural network models of potential energy surfaces [J]. J. Chem. Phys., 1995, 103: 4129
6 Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces [J]. Phys. Rev. Lett., 2007, 98: 146401
7 Zeng J Z, Zhang D, Lu D H, et al. DeePMD-kit v2: A software package for deep potential models [J]. J. Chem. Phys., 2023, 159: 054801
8 Wang H, Zhang L F, Han J Q, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics [J]. Comput. Phys. Commun., 2018, 228: 178
9 Zhang L F, Wang H, Car R, et al. Phase diagram of a deep potential water model [J]. Phys. Rev. Lett., 2021, 126: 236001
10 Qiu R, Zeng Q Y, Wang H, et al. Anomalous thermal transport across the superionic transition in ice [J]. Chin. Phys. Lett., 2023, 40: 116301
11 Wang Y, Wang J J, Hermann A, et al. Electronically driven 1D cooperative diffusion in a simple cubic crystal [J]. Phys. Rev., 2021, 11X: 011006
12 Wang X Y, Wang Z Y, Gao P Y, et al. Data-driven prediction of complex crystal structures of dense lithium [J]. Nat. Commun., 2023, 14: 2924
doi: 10.1038/s41467-023-38650-y pmid: 37217498
13 Guo F Y, Chen B, Zeng Q Y, et al. Microstructure evolution under thermo-mechanical operating of rocksalt-structure TiN via neural network potential [J]. J. Chem. Phys., 2023, 159: 204702
14 Hu T P, Tian J X, Dai F Z, et al. Impact of the local environment on Li ion transport in inorganic components of solid electrolyte interphases [J]. J. Am. Chem. Soc., 2023, 145: 1327
doi: 10.1021/jacs.2c11521 pmid: 36576963
15 Zeng J Z, Giese T J, Ekesan Ş, et al. Development of range-corrected deep learning potentials for fast, accurate quantum mechanical/molecular mechanical simulations of chemical reactions in solution [J]. J. Chem. Theory Comput., 2021, 17: 6993
doi: 10.1021/acs.jctc.1c00201 pmid: 34644071
16 Li P F, Jia X Y, Pan X L, et al. Accelerated computation of free energy profile at ab initio quantum mechanical/molecular mechanics accuracy via a semi-empirical reference potential. I. Weighted thermodynamics perturbation [J]. J. Chem. Theory Comput., 2018, 14: 5583
doi: 10.1021/acs.jctc.8b00571 pmid: 30336015
17 Volmer M, Weber A. Kinetic theory for nucleation of supersaturated structures [J]. Z. Phys. Chem., 1926, 119: 277
18 Farkas L. Keimbildungsgeschwindigkeit in übersättigten Dämpfen [J]. Z. Phys. Chem., 1927, 125U: 236
19 Becker R, Döring W. Kinetische behandlung der keimbildung in übersättigten dämpfen [J]. Ann. Phys., 1935, 416: 719
20 Zeldovich Y B. On the theory of new phase formation: Cavitation [J]. Acta Physicochem. USSR, 1943, 18: 1
21 Pruppacher H R, Klett J D, Wang P K. Microphysics of clouds and precipitation [J]. Aerosol Sci. Technol., 1998, 28: 381
22 Wang J C, Guo C, Zhang Q, et al. Recent progresses in modeling of nucleation during solidification on the atomic scale [J]. Acta Metall. Sin., 2018, 54: 204
doi: 10.11900/0412.1961.2017.00425
22 王锦程, 郭 灿, 张 琪 等. 原子尺度下凝固形核计算模拟研究的进展 [J]. 金属学报, 2018, 54: 204
doi: 10.11900/0412.1961.2017.00425
23 Sosso G C, Chen J, Cox S J, et al. Crystal nucleation in liquids: Open questions and future challenges in molecular dynamics simulations [J]. Chem. Rev., 2016, 116: 7078
doi: 10.1021/acs.chemrev.5b00744 pmid: 27228560
24 Zahn D. Thermodynamics and kinetics of prenucleation clusters, classical and non-classical nucleation [J]. ChemPhysChem, 2015, 16: 2069
doi: 10.1002/cphc.201500231 pmid: 25914369
25 Gebauer D, Kellermeier M, Gale J D, et al. Pre-nucleation clusters as solute precursors in crystallisation [J]. Chem. Soc. Rev., 2014, 43: 2348
doi: 10.1039/c3cs60451a pmid: 24457316
26 Langer J S. Theory of spinodal decomposition in alloys [J]. Ann. Phys., 1971, 65: 53
27 Rosenbluth M N, Rosenbluth A W. Further results on Monte Carlo equations of state [J]. J. Chem. Phys., 1954, 22: 881
28 Jones J E. On the determination of molecular fields. —II. From the equation of state of a gas [J]. Proc. R. Soc., 1924, 106A: 463
29 Jones J E. On the determination of molecular fields. —I. From the variation of the viscosity of a gas with temperature [J]. Proc. R. Soc., 1924, 106A: 441
30 Baskes M I. Application of the embedded-atom method to covalent materials: A semiempirical potential for silicon [J]. Phys. Rev. Lett., 1987, 59: 2666
pmid: 10035617
31 Baskes M I, Nelson J S, Wright A F. Semiempirical modified embedded-atom potentials for silicon and germanium [J]. Phys. Rev., 1989, 40B: 6085
32 Tersoff J. New empirical approach for the structure and energy of covalent systems [J]. Phys. Rev., 1988, 37B: 6991
33 Chenoweth K, Van Duin A C T, Goddard W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation [J]. J. Phys. Chem., 2008, 112A: 1040
34 Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev., 1965, 140: A1133
35 Hiberty P C, Leforestier C. Expansion of molecular orbital wave functions into valence bond wave functions. A simplified procedure [J]. J. Am. Chem. Soc., 1978, 100: 2012
36 Ercolessi F, Adams J B. Interatomic potentials from first-principles calculations: The force-matching method [J]. Europhys. Lett., 1994, 26: 583
37 Zhang L F, Han J Q, Wang H, et al. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics [J]. Phys. Rev. Lett., 2018, 120: 143001
38 Jia W L, Wang H, Chen M H, et al. Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning [A]. SC20: International Conference for High Performance Computing, Networking, Storage and Analysis [C]. Atlanta: IEEE, 2020: 1
39 Zhang L F, Wang H, Muniz M C, et al. A deep potential model with long-range electrostatic interactions [J]. J. Chem. Phys., 2022, 156: 124107
40 Bartók A P, Kondor R, Csányi G. On representing chemical environments [J]. Phys. Rev., 2013, 87B: 184115
41 Jinnouchi R, Karsai F, Verdi C, et al. Descriptors representing two- and three-body atomic distributions and their effects on the accuracy of machine-learned inter-atomic potentials [J]. J. Chem. Phys., 2020, 152: 234102
42 Jinnouchi R, Karsai F, Kresse G. On-the-fly machine learning force field generation: Application to melting points [J]. Phys. Rev., 2019, 100B: 014105
43 Jinnouchi R, Lahnsteiner J, Karsai F, et al. Phase transitions of hybrid perovskites simulated by machine-learning force fields trained on the fly with Bayesian inference [J]. Phys. Rev. Lett., 2019, 122: 225701
44 Skilling J. Maximum Entropy and Bayesian Methods [M]. Dordrecht: Springer, 1989: 89
45 Zhang Y Z, Wang H D, Chen W J, et al. DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models [J]. Comput. Phys. Commun., 2020, 253: 107206
46 Invernizzi M, Piaggi P M, Parrinello M. Unified approach to enhanced sampling [J]. Phys. Rev., 2020, 10X: 041034
47 Laio A, Parrinello M. Escaping free-energy minima [J]. Proc. Natl. Acad. Sci. USA, 2002, 99: 12562
pmid: 12271136
48 Barducci A, Bussi G, Parrinello M. Well-tempered metadynamics: A smoothly converging and tunable free-energy method [J]. Phys. Rev. Lett., 2008, 100: 020603
49 Swendsen R H, Wang J S. Replica Monte Carlo simulation of spin-glasses [J]. Phys. Rev. Lett., 1986, 57: 2607
pmid: 10033814
50 Gao Y Q. An integrate-over-temperature approach for enhanced sampling [J]. J. Chem. Phys., 2008, 128: 064105
51 Yang Y I, Niu H Y, Parrinello M. Combining metadynamics and integrated tempering sampling [J]. J. Phys. Chem. Lett., 2018, 9: 6426
doi: 10.1021/acs.jpclett.8b03005 pmid: 30354148
52 Dellago C, Bolhuis P G, Csajka F S, et al. Transition path sampling and the calculation of rate constants [J]. J. Chem. Phys., 1998, 108: 1964
53 Allen R J, Frenkel D, Ten Wolde P R. Simulating rare events in equilibrium or nonequilibrium stochastic systems [J]. J. Chem. Phys., 2006, 124: 024102
54 Allen R J, Frenkel D, Ten Wolde P R. Forward flux sampling-type schemes for simulating rare events: Efficiency analysis [J]. J. Chem. Phys., 2006, 124: 194111
55 Abrams J B, Tuckerman M E. Efficient and direct generation of multidimensional free energy surfaces via adiabatic dynamics without coordinate transformations [J]. J. Phys. Chem., 2008, 112B: 15742
56 Yu T Q, Chen P Y, Chen M, et al. Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions [J]. J. Chem. Phys., 2014, 140: 214109
57 Grafke T, Vanden-Eijnden E. Numerical computation of rare events via large deviation theory [J]. Chaos, 2019, 29: 063118
58 Hartmann C, Kebiri O, Neureither L, et al. Variational approach to rare event simulation using least-squares regression [J]. Chaos, 2019, 29: 063107
59 Valsson O, Parrinello M. Variational approach to enhanced sampling and free energy calculations [J]. Phys. Rev. Lett., 2014, 113: 090601
60 Zhang J, Yang Y I, Noé F. Targeted adversarial learning optimized sampling [J]. J. Phys. Chem. Lett., 2019, 10: 5791
doi: 10.1021/acs.jpclett.9b02173 pmid: 31522495
61 Petitjean M. On the root mean square quantitative chirality and quantitative symmetry measures [J]. J. Math. Phys., 1999, 40: 4587
62 Niu H Y, Piaggi P M, Invernizzi M, et al. Molecular dynamics simulations of liquid silica crystallization [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 5348
doi: 10.1073/pnas.1803919115 pmid: 29735667
63 Sellberg J A, Huang C, McQueen T A, et al. Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature [J]. Nature, 2014, 510: 381
64 Debye P. Zerstreuung von röntgenstrahlen [J]. Ann. Phys., 1915, 351: 809
65 Lin Z B, Zhigilei L V. Time-resolved diffraction profiles and atomic dynamics in short-pulse laser-induced structural transformations: Molecular dynamics study [J]. Phys. Rev., 2006, 73B: 184113
66 Bonati L, Parrinello M. Silicon liquid structure and crystal nucleation from ab initio deep metadynamics [J]. Phys. Rev. Lett., 2018, 121: 265701
67 Zhang Y Y, Niu H Y, Piccini G M, et al. Improving collective variables: The case of crystallization [J]. J. Chem. Phys., 2019, 150: 094509
68 Yang M Y, Karmakar T, Parrinello M. Liquid-liquid critical point in phosphorus [J]. Phys. Rev. Lett., 2021, 127: 080603
69 Zhang L S, Yang M Y, Zhang S W, et al. Unveiling the crystallization mechanism of cadmium selenide via molecular dynamics simulation with machine-learning-based deep potential [J]. J. Mater. Sci. Technol., 2024, 185: 23
doi: 10.1016/j.jmst.2023.09.059
70 Niu H Y, Yang Y I, Parrinello M. Temperature dependence of homogeneous nucleation in ice [J]. Phys. Rev. Lett., 2019, 122: 245501
71 Li M D, Zhang J, Niu H Y, et al. Phase transition between crystalline variants of ordinary ice [J]. J. Phys. Chem. Lett., 2022, 13: 8601
doi: 10.1021/acs.jpclett.2c02176 pmid: 36073968
72 Deng J, Niu H Y, Hu J W, et al. Melting of MgSiO3 determined by machine learning potentials [J]. Phys. Rev., 2023, 107B: 064103
73 Ahlawat P, Hinderhofer A, Alharbi E A, et al. A combined molecular dynamics and experimental study of two-step process enabling low-temperature formation of phase-pure α-FAPbI3 [J]. Sci. Adv., 2021, 7: eabe3326
74 Mendels D, Piccini G M, Parrinello M. Collective variables from local fluctuations [J]. J. Phys. Chem. Lett., 2018, 9: 2776
doi: 10.1021/acs.jpclett.8b00733 pmid: 29733652
75 Bonati L, Rizzi V, Parrinello M. Data-driven collective variables for enhanced sampling [J]. J. Phys. Chem. Lett., 2020, 11: 2998
doi: 10.1021/acs.jpclett.0c00535 pmid: 32239945
76 Naritomi Y, Fuchigami S. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: The case of domain motions [J]. J. Chem. Phys., 2011, 134: 065101
77 Bonati L, Piccini G M, Parrinello M. Deep learning the slow modes for rare events sampling [J]. Proc. Natl. Acad. Sci. USA, 2021, 118: e2113533118
78 Yuan J H, Chen Y, Duan X M, et al. CdSe optical parametric oscillator operating at 12.07 µm with 170 mW output [J]. Opt. Laser Technol., 2017, 92: 1
79 Yuan J H, Duan X M, Yao B Q, et al. Tunable 10- to 11-μm CdSe optical parametric oscillator pumped by a 2.1-μm Ho: YAG laser [J]. Appl. Phys., 2016, 122B: 202
80 Ninomiya S, Adachi S. Optical properties of cubic and hexagonal CdSe [J]. J. Appl. Phys., 1995, 78: 4681
81 Park S H, Casey M P, Falk J. Nonlinear optical properties of CdSe quantum dots [J]. J. Appl. Phys., 1993, 73: 8041
82 Steininger J. Growth of CdSe single crystals by temperature gradient solution zoning in excess Se [J]. Mater. Res. Bull., 1968, 3: 595
83 Štich I, Car R, Parrinello M. Structural bonding, dynamical, and electronic properties of liquid silicon: An ab initio molecular-dynamics study [J]. Phys. Rev., 1991, 44B: 4262
84 Bartels-Rausch T. Ten things we need to know about ice and snow [J]. Nature, 2013, 494: 27
85 Matsumoto M, Saito S, Ohmine I. Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing [J]. Nature, 2002, 416: 409
86 Tanaka H. Bond orientational order in liquids: Towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization: Bond orientational order in liquids [J]. Eur. Phys. J., 2012, 35E: 113
87 Bullock G, Molinero V. Low-density liquid water is the mother of ice: On the relation between mesostructure, thermodynamics and ice crystallization in solutions [J]. Faraday Discuss., 2013, 167: 371
pmid: 24640501
88 Moore E B, Molinero V. Structural transformation in supercooled water controls the crystallization rate of ice [J]. Nature, 2011, 479: 506
89 Fitzner M, Sosso G C, Cox S J, et al. Ice is born in low-mobility regions of supercooled liquid water [J]. Proc. Natl. Acad. Sci. USA, 2019, 116: 2009
doi: 10.1073/pnas.1817135116 pmid: 30670640
90 Haji-Akbari A, Debenedetti P G. Direct calculation of ice homogeneous nucleation rate for a molecular model of water [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 10582
doi: 10.1073/pnas.1509267112 pmid: 26240318
91 Chen M Y, Tan L, Wang H, et al. Imperfectly coordinated water molecules pave the way for homogeneous ice nucleation [DB/OL]. arXiv: 2304. 12665, 2023
92 Piaggi P M, Weis J, Panagiotopoulos A Z, et al. Homogeneous ice nucleation in an ab initio machine-learning model of water [J]. Proc. Natl. Acad. Sci. USA, 2022, 119: e2207294119.
93 Sanchez-Burgos I, Tejedor A R, Vega C, et al. Homogeneous ice nucleation rates for mW and TIP4P/ICE models through Lattice Mold calculations [J]. J. Chem. Phys., 2022, 157: 094503
94 Gong X G, Chiarotti G L, Parrinello M, et al. α-gallium: A metallic molecular crystal [J]. Phys. Rev., 1991, 43B: 14277
95 Narten A H. Liquid gallium: Comparison of x-ray and neutron-diffraction data [J]. J. Chem. Phys., 1972, 56: 1185
96 Daeneke T, Khoshmanesh K, Mahmood N, et al. Liquid metals: Fundamentals and applications in chemistry [J]. Chem. Soc. Rev., 2018, 47: 4073
doi: 10.1039/c7cs00043j pmid: 29611563
97 Heine V. Crystal structure of gallium metal [J]. J. Phys., 1968, 1C: 222
98 Niu H Y, Bonati L, Piaggi P M, et al. Ab initio phase diagram and nucleation of gallium [J]. Nat. Commun., 2020, 11: 2654
doi: 10.1038/s41467-020-16372-9 pmid: 32461573
99 Bosio L. Crystal structures of Ga(II) and Ga(III) [J]. J. Chem. Phys., 1978, 68: 1221
100 Piaggi P M, Parrinello M. Multithermal-multibaric molecular simulations from a variational principle [J]. Phys. Rev. Lett., 2019, 122: 050601
101 Espinosa J R, Vega C, Valeriani C, et al. Seeding approach to crystal nucleation [J]. J. Chem. Phys., 2016, 144: 034501
102 San X Y, Hu J W, Chen M Y, et al. Unlocking the mysterious polytypic features within vaterite CaCO3 [J]. Nat. Commun., 2023, 14: 7858
doi: 10.1038/s41467-023-43625-0 pmid: 38030637
103 Zhang D, Liu X Z J, Zhang X Y, et al. DPA-2: Towards a universal large atomic model for molecular and material simulation [DB/OL]. arXiv: 2312. 15492, 2023
104 Mo P H, Li C, Zhao D, et al. Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture [J]. npj Comput. Mater., 2022, 8: 107
105 Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
doi: 10.11900/0412.1961.2020.00199
105 宿彦京, 付华栋, 白 洋 等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
doi: 10.11900/0412.1961.2020.00199
106 AIS square [EB/OL].
[1] 王霖, 魏晨, 王雷, 王军, 李金山. Cu-Co系难混溶合金核壳结构演化过程模拟[J]. 金属学报, 2024, 60(9): 1239-1249.
[2] 曹姝婷, 赵剑, 巩桐兆, 张少华, 张健. Cu含量对K4061合金显微组织和拉伸性能的影响[J]. 金属学报, 2024, 60(9): 1179-1188.
[3] 王延绪, 龚武, 苏玉华, 李昺. 中子表征技术在金属结构材料研究中的应用[J]. 金属学报, 2024, 60(8): 1001-1016.
[4] 董蔚霞, 姚忠正, 刘思楠, 陈国星, 王循理, 吴桢舵, 兰司. Pd-Si金属玻璃液-液相变过程的短程-中程序结构演变规律[J]. 金属学报, 2024, 60(8): 1119-1129.
[5] 陈诚, 杨光昱, 金梦辉, 王强, 汤鑫, 程会民, 介万奇. 铸型正反转搅动对精密铸造K4169合金凝固组织和室温力学性能的影响[J]. 金属学报, 2024, 60(7): 926-936.
[6] 高新亮, 巴文月, 张正, 席仕平, 徐东, 杨志南, 张福成. 贝氏体轨道钢连铸凝固过程中溶质微观偏析模型及分析[J]. 金属学报, 2024, 60(7): 990-1000.
[7] 朱绍祥, 王清江, 刘建荣, 陈志勇. TC19合金铸锭中ZrMo元素的宏观偏析行为[J]. 金属学报, 2024, 60(7): 869-880.
[8] 申洋, 谷征满, 王聪. 铁素体系耐热钢焊接热影响区相变行为的CSLM原位观察[J]. 金属学报, 2024, 60(6): 802-816.
[9] 柏智文, 丁志刚, 周爱龙, 侯怀宇, 刘伟, 刘峰. α-Fe单晶拉伸变形热-动力学的分子动力学模拟[J]. 金属学报, 2024, 60(6): 848-856.
[10] 杨伟阳, 黎先浩, 赵鹏飞, 于海彬, 赵松山, 罗海文. 取向硅钢不同常化工艺下组织及抑制剂的变化[J]. 金属学报, 2024, 60(5): 605-615.
[11] 王金鑫, 姚美意, 林雨晨, 陈刘涛, 高长源, 徐诗彤, 胡丽娟, 谢耀平, 周邦新. Zr-1Nb-xFe合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2024, 60(5): 670-680.
[12] 孟子凯, 孟智超, 高长源, 郭辉, 陈汉森, 陈刘涛, 徐东生, 杨锐. 不同条件下纳米晶 α-Zr蠕变行为的分子动力学模拟[J]. 金属学报, 2024, 60(5): 699-712.
[13] 刘壮壮, 丁明路, 谢建新. 金属3D打印数字化制造研究进展[J]. 金属学报, 2024, 60(5): 569-584.
[14] 董士虎, 张红伟, 吕文朋, 雷洪, 王强. 基于界面追踪-动网格技术模拟凝固收缩下Fe-C合金宏观偏析[J]. 金属学报, 2024, 60(3): 388-404.
[15] 杨平, 马丹丹, 顾晨, 顾新福. 初始组织及冷轧压下量对工业低牌号电工钢相变织构及磁性能的影响[J]. 金属学报, 2024, 60(3): 377-387.