|
|
机器学习分子动力学辅助材料凝固形核研究进展 |
陈名毅1,2, 胡俊伟1,2, 余耀辰1,2, 牛海洋1,2( ) |
1 西北工业大学 凝固技术国家重点实验室 西安 710072 2 西北工业大学 材料学院 西安 710072 |
|
Advances in Machine Learning Molecular Dynamics to Assist Materials Nucleation and Solidification Research |
CHEN Mingyi1,2, HU Junwei1,2, YU Yaochen1,2, NIU Haiyang1,2( ) |
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China 2 School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China |
引用本文:
陈名毅, 胡俊伟, 余耀辰, 牛海洋. 机器学习分子动力学辅助材料凝固形核研究进展[J]. 金属学报, 2024, 60(10): 1329-1344.
Mingyi CHEN,
Junwei HU,
Yaochen YU,
Haiyang NIU.
Advances in Machine Learning Molecular Dynamics to Assist Materials Nucleation and Solidification Research[J]. Acta Metall Sin, 2024, 60(10): 1329-1344.
1 |
Alder B J. Studies in molecular dynamics. III. A mixture of hard spheres [J]. J. Chem. Phys., 1964, 40: 2724
|
2 |
Alder B J, Wainwright T E. Studies in molecular dynamics. I. General method [J]. J. Chem. Phys., 1959, 31: 459
|
3 |
Alder B J, Wainwright T E. Phase transition for a hard sphere system [J]. J. Chem. Phys., 1957, 27: 1208
|
4 |
Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory [J]. Phys. Rev. Lett., 1985, 55: 2471
pmid: 10032153
|
5 |
Blank T B, Brown S D, Calhoun A W, et al. Neural network models of potential energy surfaces [J]. J. Chem. Phys., 1995, 103: 4129
|
6 |
Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces [J]. Phys. Rev. Lett., 2007, 98: 146401
|
7 |
Zeng J Z, Zhang D, Lu D H, et al. DeePMD-kit v2: A software package for deep potential models [J]. J. Chem. Phys., 2023, 159: 054801
|
8 |
Wang H, Zhang L F, Han J Q, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics [J]. Comput. Phys. Commun., 2018, 228: 178
|
9 |
Zhang L F, Wang H, Car R, et al. Phase diagram of a deep potential water model [J]. Phys. Rev. Lett., 2021, 126: 236001
|
10 |
Qiu R, Zeng Q Y, Wang H, et al. Anomalous thermal transport across the superionic transition in ice [J]. Chin. Phys. Lett., 2023, 40: 116301
|
11 |
Wang Y, Wang J J, Hermann A, et al. Electronically driven 1D cooperative diffusion in a simple cubic crystal [J]. Phys. Rev., 2021, 11X: 011006
|
12 |
Wang X Y, Wang Z Y, Gao P Y, et al. Data-driven prediction of complex crystal structures of dense lithium [J]. Nat. Commun., 2023, 14: 2924
doi: 10.1038/s41467-023-38650-y
pmid: 37217498
|
13 |
Guo F Y, Chen B, Zeng Q Y, et al. Microstructure evolution under thermo-mechanical operating of rocksalt-structure TiN via neural network potential [J]. J. Chem. Phys., 2023, 159: 204702
|
14 |
Hu T P, Tian J X, Dai F Z, et al. Impact of the local environment on Li ion transport in inorganic components of solid electrolyte interphases [J]. J. Am. Chem. Soc., 2023, 145: 1327
doi: 10.1021/jacs.2c11521
pmid: 36576963
|
15 |
Zeng J Z, Giese T J, Ekesan Ş, et al. Development of range-corrected deep learning potentials for fast, accurate quantum mechanical/molecular mechanical simulations of chemical reactions in solution [J]. J. Chem. Theory Comput., 2021, 17: 6993
doi: 10.1021/acs.jctc.1c00201
pmid: 34644071
|
16 |
Li P F, Jia X Y, Pan X L, et al. Accelerated computation of free energy profile at ab initio quantum mechanical/molecular mechanics accuracy via a semi-empirical reference potential. I. Weighted thermodynamics perturbation [J]. J. Chem. Theory Comput., 2018, 14: 5583
doi: 10.1021/acs.jctc.8b00571
pmid: 30336015
|
17 |
Volmer M, Weber A. Kinetic theory for nucleation of supersaturated structures [J]. Z. Phys. Chem., 1926, 119: 277
|
18 |
Farkas L. Keimbildungsgeschwindigkeit in übersättigten Dämpfen [J]. Z. Phys. Chem., 1927, 125U: 236
|
19 |
Becker R, Döring W. Kinetische behandlung der keimbildung in übersättigten dämpfen [J]. Ann. Phys., 1935, 416: 719
|
20 |
Zeldovich Y B. On the theory of new phase formation: Cavitation [J]. Acta Physicochem. USSR, 1943, 18: 1
|
21 |
Pruppacher H R, Klett J D, Wang P K. Microphysics of clouds and precipitation [J]. Aerosol Sci. Technol., 1998, 28: 381
|
22 |
Wang J C, Guo C, Zhang Q, et al. Recent progresses in modeling of nucleation during solidification on the atomic scale [J]. Acta Metall. Sin., 2018, 54: 204
doi: 10.11900/0412.1961.2017.00425
|
22 |
王锦程, 郭 灿, 张 琪 等. 原子尺度下凝固形核计算模拟研究的进展 [J]. 金属学报, 2018, 54: 204
doi: 10.11900/0412.1961.2017.00425
|
23 |
Sosso G C, Chen J, Cox S J, et al. Crystal nucleation in liquids: Open questions and future challenges in molecular dynamics simulations [J]. Chem. Rev., 2016, 116: 7078
doi: 10.1021/acs.chemrev.5b00744
pmid: 27228560
|
24 |
Zahn D. Thermodynamics and kinetics of prenucleation clusters, classical and non-classical nucleation [J]. ChemPhysChem, 2015, 16: 2069
doi: 10.1002/cphc.201500231
pmid: 25914369
|
25 |
Gebauer D, Kellermeier M, Gale J D, et al. Pre-nucleation clusters as solute precursors in crystallisation [J]. Chem. Soc. Rev., 2014, 43: 2348
doi: 10.1039/c3cs60451a
pmid: 24457316
|
26 |
Langer J S. Theory of spinodal decomposition in alloys [J]. Ann. Phys., 1971, 65: 53
|
27 |
Rosenbluth M N, Rosenbluth A W. Further results on Monte Carlo equations of state [J]. J. Chem. Phys., 1954, 22: 881
|
28 |
Jones J E. On the determination of molecular fields. —II. From the equation of state of a gas [J]. Proc. R. Soc., 1924, 106A: 463
|
29 |
Jones J E. On the determination of molecular fields. —I. From the variation of the viscosity of a gas with temperature [J]. Proc. R. Soc., 1924, 106A: 441
|
30 |
Baskes M I. Application of the embedded-atom method to covalent materials: A semiempirical potential for silicon [J]. Phys. Rev. Lett., 1987, 59: 2666
pmid: 10035617
|
31 |
Baskes M I, Nelson J S, Wright A F. Semiempirical modified embedded-atom potentials for silicon and germanium [J]. Phys. Rev., 1989, 40B: 6085
|
32 |
Tersoff J. New empirical approach for the structure and energy of covalent systems [J]. Phys. Rev., 1988, 37B: 6991
|
33 |
Chenoweth K, Van Duin A C T, Goddard W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation [J]. J. Phys. Chem., 2008, 112A: 1040
|
34 |
Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev., 1965, 140: A1133
|
35 |
Hiberty P C, Leforestier C. Expansion of molecular orbital wave functions into valence bond wave functions. A simplified procedure [J]. J. Am. Chem. Soc., 1978, 100: 2012
|
36 |
Ercolessi F, Adams J B. Interatomic potentials from first-principles calculations: The force-matching method [J]. Europhys. Lett., 1994, 26: 583
|
37 |
Zhang L F, Han J Q, Wang H, et al. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics [J]. Phys. Rev. Lett., 2018, 120: 143001
|
38 |
Jia W L, Wang H, Chen M H, et al. Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning [A]. SC20: International Conference for High Performance Computing, Networking, Storage and Analysis [C]. Atlanta: IEEE, 2020: 1
|
39 |
Zhang L F, Wang H, Muniz M C, et al. A deep potential model with long-range electrostatic interactions [J]. J. Chem. Phys., 2022, 156: 124107
|
40 |
Bartók A P, Kondor R, Csányi G. On representing chemical environments [J]. Phys. Rev., 2013, 87B: 184115
|
41 |
Jinnouchi R, Karsai F, Verdi C, et al. Descriptors representing two- and three-body atomic distributions and their effects on the accuracy of machine-learned inter-atomic potentials [J]. J. Chem. Phys., 2020, 152: 234102
|
42 |
Jinnouchi R, Karsai F, Kresse G. On-the-fly machine learning force field generation: Application to melting points [J]. Phys. Rev., 2019, 100B: 014105
|
43 |
Jinnouchi R, Lahnsteiner J, Karsai F, et al. Phase transitions of hybrid perovskites simulated by machine-learning force fields trained on the fly with Bayesian inference [J]. Phys. Rev. Lett., 2019, 122: 225701
|
44 |
Skilling J. Maximum Entropy and Bayesian Methods [M]. Dordrecht: Springer, 1989: 89
|
45 |
Zhang Y Z, Wang H D, Chen W J, et al. DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models [J]. Comput. Phys. Commun., 2020, 253: 107206
|
46 |
Invernizzi M, Piaggi P M, Parrinello M. Unified approach to enhanced sampling [J]. Phys. Rev., 2020, 10X: 041034
|
47 |
Laio A, Parrinello M. Escaping free-energy minima [J]. Proc. Natl. Acad. Sci. USA, 2002, 99: 12562
pmid: 12271136
|
48 |
Barducci A, Bussi G, Parrinello M. Well-tempered metadynamics: A smoothly converging and tunable free-energy method [J]. Phys. Rev. Lett., 2008, 100: 020603
|
49 |
Swendsen R H, Wang J S. Replica Monte Carlo simulation of spin-glasses [J]. Phys. Rev. Lett., 1986, 57: 2607
pmid: 10033814
|
50 |
Gao Y Q. An integrate-over-temperature approach for enhanced sampling [J]. J. Chem. Phys., 2008, 128: 064105
|
51 |
Yang Y I, Niu H Y, Parrinello M. Combining metadynamics and integrated tempering sampling [J]. J. Phys. Chem. Lett., 2018, 9: 6426
doi: 10.1021/acs.jpclett.8b03005
pmid: 30354148
|
52 |
Dellago C, Bolhuis P G, Csajka F S, et al. Transition path sampling and the calculation of rate constants [J]. J. Chem. Phys., 1998, 108: 1964
|
53 |
Allen R J, Frenkel D, Ten Wolde P R. Simulating rare events in equilibrium or nonequilibrium stochastic systems [J]. J. Chem. Phys., 2006, 124: 024102
|
54 |
Allen R J, Frenkel D, Ten Wolde P R. Forward flux sampling-type schemes for simulating rare events: Efficiency analysis [J]. J. Chem. Phys., 2006, 124: 194111
|
55 |
Abrams J B, Tuckerman M E. Efficient and direct generation of multidimensional free energy surfaces via adiabatic dynamics without coordinate transformations [J]. J. Phys. Chem., 2008, 112B: 15742
|
56 |
Yu T Q, Chen P Y, Chen M, et al. Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions [J]. J. Chem. Phys., 2014, 140: 214109
|
57 |
Grafke T, Vanden-Eijnden E. Numerical computation of rare events via large deviation theory [J]. Chaos, 2019, 29: 063118
|
58 |
Hartmann C, Kebiri O, Neureither L, et al. Variational approach to rare event simulation using least-squares regression [J]. Chaos, 2019, 29: 063107
|
59 |
Valsson O, Parrinello M. Variational approach to enhanced sampling and free energy calculations [J]. Phys. Rev. Lett., 2014, 113: 090601
|
60 |
Zhang J, Yang Y I, Noé F. Targeted adversarial learning optimized sampling [J]. J. Phys. Chem. Lett., 2019, 10: 5791
doi: 10.1021/acs.jpclett.9b02173
pmid: 31522495
|
61 |
Petitjean M. On the root mean square quantitative chirality and quantitative symmetry measures [J]. J. Math. Phys., 1999, 40: 4587
|
62 |
Niu H Y, Piaggi P M, Invernizzi M, et al. Molecular dynamics simulations of liquid silica crystallization [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 5348
doi: 10.1073/pnas.1803919115
pmid: 29735667
|
63 |
Sellberg J A, Huang C, McQueen T A, et al. Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature [J]. Nature, 2014, 510: 381
|
64 |
Debye P. Zerstreuung von röntgenstrahlen [J]. Ann. Phys., 1915, 351: 809
|
65 |
Lin Z B, Zhigilei L V. Time-resolved diffraction profiles and atomic dynamics in short-pulse laser-induced structural transformations: Molecular dynamics study [J]. Phys. Rev., 2006, 73B: 184113
|
66 |
Bonati L, Parrinello M. Silicon liquid structure and crystal nucleation from ab initio deep metadynamics [J]. Phys. Rev. Lett., 2018, 121: 265701
|
67 |
Zhang Y Y, Niu H Y, Piccini G M, et al. Improving collective variables: The case of crystallization [J]. J. Chem. Phys., 2019, 150: 094509
|
68 |
Yang M Y, Karmakar T, Parrinello M. Liquid-liquid critical point in phosphorus [J]. Phys. Rev. Lett., 2021, 127: 080603
|
69 |
Zhang L S, Yang M Y, Zhang S W, et al. Unveiling the crystallization mechanism of cadmium selenide via molecular dynamics simulation with machine-learning-based deep potential [J]. J. Mater. Sci. Technol., 2024, 185: 23
doi: 10.1016/j.jmst.2023.09.059
|
70 |
Niu H Y, Yang Y I, Parrinello M. Temperature dependence of homogeneous nucleation in ice [J]. Phys. Rev. Lett., 2019, 122: 245501
|
71 |
Li M D, Zhang J, Niu H Y, et al. Phase transition between crystalline variants of ordinary ice [J]. J. Phys. Chem. Lett., 2022, 13: 8601
doi: 10.1021/acs.jpclett.2c02176
pmid: 36073968
|
72 |
Deng J, Niu H Y, Hu J W, et al. Melting of MgSiO3 determined by machine learning potentials [J]. Phys. Rev., 2023, 107B: 064103
|
73 |
Ahlawat P, Hinderhofer A, Alharbi E A, et al. A combined molecular dynamics and experimental study of two-step process enabling low-temperature formation of phase-pure α-FAPbI3 [J]. Sci. Adv., 2021, 7: eabe3326
|
74 |
Mendels D, Piccini G M, Parrinello M. Collective variables from local fluctuations [J]. J. Phys. Chem. Lett., 2018, 9: 2776
doi: 10.1021/acs.jpclett.8b00733
pmid: 29733652
|
75 |
Bonati L, Rizzi V, Parrinello M. Data-driven collective variables for enhanced sampling [J]. J. Phys. Chem. Lett., 2020, 11: 2998
doi: 10.1021/acs.jpclett.0c00535
pmid: 32239945
|
76 |
Naritomi Y, Fuchigami S. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: The case of domain motions [J]. J. Chem. Phys., 2011, 134: 065101
|
77 |
Bonati L, Piccini G M, Parrinello M. Deep learning the slow modes for rare events sampling [J]. Proc. Natl. Acad. Sci. USA, 2021, 118: e2113533118
|
78 |
Yuan J H, Chen Y, Duan X M, et al. CdSe optical parametric oscillator operating at 12.07 µm with 170 mW output [J]. Opt. Laser Technol., 2017, 92: 1
|
79 |
Yuan J H, Duan X M, Yao B Q, et al. Tunable 10- to 11-μm CdSe optical parametric oscillator pumped by a 2.1-μm Ho: YAG laser [J]. Appl. Phys., 2016, 122B: 202
|
80 |
Ninomiya S, Adachi S. Optical properties of cubic and hexagonal CdSe [J]. J. Appl. Phys., 1995, 78: 4681
|
81 |
Park S H, Casey M P, Falk J. Nonlinear optical properties of CdSe quantum dots [J]. J. Appl. Phys., 1993, 73: 8041
|
82 |
Steininger J. Growth of CdSe single crystals by temperature gradient solution zoning in excess Se [J]. Mater. Res. Bull., 1968, 3: 595
|
83 |
Štich I, Car R, Parrinello M. Structural bonding, dynamical, and electronic properties of liquid silicon: An ab initio molecular-dynamics study [J]. Phys. Rev., 1991, 44B: 4262
|
84 |
Bartels-Rausch T. Ten things we need to know about ice and snow [J]. Nature, 2013, 494: 27
|
85 |
Matsumoto M, Saito S, Ohmine I. Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing [J]. Nature, 2002, 416: 409
|
86 |
Tanaka H. Bond orientational order in liquids: Towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization: Bond orientational order in liquids [J]. Eur. Phys. J., 2012, 35E: 113
|
87 |
Bullock G, Molinero V. Low-density liquid water is the mother of ice: On the relation between mesostructure, thermodynamics and ice crystallization in solutions [J]. Faraday Discuss., 2013, 167: 371
pmid: 24640501
|
88 |
Moore E B, Molinero V. Structural transformation in supercooled water controls the crystallization rate of ice [J]. Nature, 2011, 479: 506
|
89 |
Fitzner M, Sosso G C, Cox S J, et al. Ice is born in low-mobility regions of supercooled liquid water [J]. Proc. Natl. Acad. Sci. USA, 2019, 116: 2009
doi: 10.1073/pnas.1817135116
pmid: 30670640
|
90 |
Haji-Akbari A, Debenedetti P G. Direct calculation of ice homogeneous nucleation rate for a molecular model of water [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 10582
doi: 10.1073/pnas.1509267112
pmid: 26240318
|
91 |
Chen M Y, Tan L, Wang H, et al. Imperfectly coordinated water molecules pave the way for homogeneous ice nucleation [DB/OL]. arXiv: 2304. 12665, 2023
|
92 |
Piaggi P M, Weis J, Panagiotopoulos A Z, et al. Homogeneous ice nucleation in an ab initio machine-learning model of water [J]. Proc. Natl. Acad. Sci. USA, 2022, 119: e2207294119.
|
93 |
Sanchez-Burgos I, Tejedor A R, Vega C, et al. Homogeneous ice nucleation rates for mW and TIP4P/ICE models through Lattice Mold calculations [J]. J. Chem. Phys., 2022, 157: 094503
|
94 |
Gong X G, Chiarotti G L, Parrinello M, et al. α-gallium: A metallic molecular crystal [J]. Phys. Rev., 1991, 43B: 14277
|
95 |
Narten A H. Liquid gallium: Comparison of x-ray and neutron-diffraction data [J]. J. Chem. Phys., 1972, 56: 1185
|
96 |
Daeneke T, Khoshmanesh K, Mahmood N, et al. Liquid metals: Fundamentals and applications in chemistry [J]. Chem. Soc. Rev., 2018, 47: 4073
doi: 10.1039/c7cs00043j
pmid: 29611563
|
97 |
Heine V. Crystal structure of gallium metal [J]. J. Phys., 1968, 1C: 222
|
98 |
Niu H Y, Bonati L, Piaggi P M, et al. Ab initio phase diagram and nucleation of gallium [J]. Nat. Commun., 2020, 11: 2654
doi: 10.1038/s41467-020-16372-9
pmid: 32461573
|
99 |
Bosio L. Crystal structures of Ga(II) and Ga(III) [J]. J. Chem. Phys., 1978, 68: 1221
|
100 |
Piaggi P M, Parrinello M. Multithermal-multibaric molecular simulations from a variational principle [J]. Phys. Rev. Lett., 2019, 122: 050601
|
101 |
Espinosa J R, Vega C, Valeriani C, et al. Seeding approach to crystal nucleation [J]. J. Chem. Phys., 2016, 144: 034501
|
102 |
San X Y, Hu J W, Chen M Y, et al. Unlocking the mysterious polytypic features within vaterite CaCO3 [J]. Nat. Commun., 2023, 14: 7858
doi: 10.1038/s41467-023-43625-0
pmid: 38030637
|
103 |
Zhang D, Liu X Z J, Zhang X Y, et al. DPA-2: Towards a universal large atomic model for molecular and material simulation [DB/OL]. arXiv: 2312. 15492, 2023
|
104 |
Mo P H, Li C, Zhao D, et al. Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture [J]. npj Comput. Mater., 2022, 8: 107
|
105 |
Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
doi: 10.11900/0412.1961.2020.00199
|
105 |
宿彦京, 付华栋, 白 洋 等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
doi: 10.11900/0412.1961.2020.00199
|
106 |
AIS square [EB/OL].
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|