Please wait a minute...
金属学报  2023, Vol. 59 Issue (7): 939-946    DOI: 10.11900/0412.1961.2021.00266
  研究论文 本期目录 | 过刊浏览 |
不同离子对TC4钛合金电化学腐蚀行为的协同作用机制
赵平平1, 宋影伟1,2(), 董凯辉1,2, 韩恩厚1,2
1中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
2南方海洋科学与工程广东省实验室(珠海) 珠海 519000
Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy
ZHAO Pingping1, SONG Yingwei1,2(), DONG Kaihui1,2, HAN En-Hou1,2
1CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
引用本文:

赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
Pingping ZHAO, Yingwei SONG, Kaihui DONG, En-Hou HAN. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. Acta Metall Sin, 2023, 59(7): 939-946.

全文: PDF(1962 KB)   HTML
摘要: 

采用电化学方法研究了H+、F-及其2者协同作用加速TC4钛合金腐蚀的机制,以及添加Fe3+后TC4钛合金腐蚀的缓蚀机理。结果表明,H+对TC4钛合金表面钝化膜的破坏作用较小,而F-对钝化膜破坏作用极大,尤其当F-和H+共存时协同加速TC4钛合金的腐蚀,但加入一定浓度的Fe3+后,对TC4钛合金的腐蚀起到抑制作用,原因是Fe3+加速阴极还原反应,使阳极从活化-钝化区转移到钝化区,同时溶液中Fe3+通过络合作用消耗F-,减弱了F-对钝化膜的破坏作用。

关键词 钛合金电化学腐蚀协同作用钝化膜离子    
Abstract

Due to the compact passive film, titanium alloys exhibit excellent corrosion resistance. However, during practical applications, the passive film is inevitably damaged by aggressive ions. Among the common ions, F- is the most harmful to the passive film because of its high complexation with Ti. However, the destructiveness of F- varies with pH. Moreover, there are inhibitory ions that reduce the aggressiveness of F-. The acceleration effects of H+ and F- as well as the inhibition effect of Fe3+ on the corrosion behavior of TC4 alloy were examined in this work using electrochemical polarization curves measurements and electrochemical impedance spectroscopy (EIS). The results reveal that whereas H+ has slight destructive effect on the passive film, F- has a considerable aggressive effect. In particular, F- and H+ work synergistically to accelerate the corrosion of the TC4 alloy. The addition of Fe3+ can somewhat reduce corrosion of the TC4 alloy. This can be attributable to the fact that the faster cathodic reduction caused by Fe3+ moves the anodic curves from active-passive region to passive region. Meanwhile, F- is consumed by forming a compound with Fe3+, which mitigates the corrosive effect of F- on passive film.

Key wordstitanium alloy    electrochemical corrosion    synergistic effect    passive film    ion
收稿日期: 2021-06-29     
ZTFLH:  TG178  
基金资助:南方海洋科学与工程广东省实验室(珠海)创新团队建设项目(311021013)
通讯作者: 宋影伟,ywsong@imr.ac.cn,主要从事轻合金的腐蚀与防护
Corresponding author: SONG Yingwei, professor, Tel: (024)23893115, E-mail: ywsong@imr.ac.cn
作者简介: 赵平平,女,1994年生,博士生
图1  TC4钛合金显微组织的OM像
图2  TC4钛合金在含不同浓度H+的3.5%NaCl中的极化曲线和EIS结果
cHEcorricorrbcipp
mmol·L-1mVμA·cm-2mV·decade-1μA·cm-2
0-5020.06-2234.48
25-4691.62-1434.50
50-4693.14-1594.51
100-4944.39-2044.51
表1  TC4钛合金在含不同浓度H+的3.5%NaCl中极化曲线的拟合结果
图3  TC4钛合金在含不同浓度F-的3.5%NaCl中的极化曲线和EIS结果
cFEcorricorrbcipp
mmol·L-1mVμA·cm-2mV·decade-1μA·cm-2
0-5020.06-2234.48
3-5000.09-2077.65
4-5580.12-1669.72
6-6480.19-17514.52
8-7340.10-16920.97
12-6270.20-26820.97
25-7440.13-16863.46
表2  TC4钛合金在含不同浓度F-的3.5%NaCl中极化曲线的拟合结果
图4  TC4钛合金在含不同浓度F-的酸性3.5%NaCl + 50 mmol/L H+中的极化曲线和EIS结果
cFEcorricorrbcipp
mmol·L-1mVμA·cm-2mV·decade-1μA·cm-2
0-4693.14-1594.48
3-89264.00-11389.20
4-90878.27-94113.50
6-916130.43-104113.50
8-955189.57-90239.90
表3  TC4钛合金在含不同浓度F-的酸性3.5%NaCl + 50 mmol/L H+中极化曲线的拟合结果
图5  TC4钛合金在含不同浓度H+的3.5%NaCl + 3 mmol/L F-溶液中的极化曲线
图6  TC4钛合金在含不同浓度Fe3+的酸性含氟溶液3.5%NaCl + 50 mmol/L H+ + 3 mmol/L F-中的极化曲线和EIS结果
cFeEcorricorrbcipp
mmol·L-1mVμA·cm-2mV·decade-1μA·cm-2
0-89264.00-11389.2
1-89264.00-11372.4
2-4509.57-12143.1
3-848.68-17930.0
4-437.83-17923.6
5112.64-20618.2
表4  TC4钛合金在含不同浓度Fe3+的酸性含氟溶液3.5%NaCl + 50 mmol/L H+ + 3 mmol/L F-中极化曲线的拟合结果
图7  Fe3+对TC4钛合金在3.5%NaCl中阴极和阳极极化曲线的影响
图8  不同离子对钛合金极化曲线影响示意图
1 Yan M Q, Chen L Q, Yang P, et al. Effect of hot deformation parameters on the evolution of microstructure and texture of β phase in TC18 titanium alloy [J]. Acta Metall. Sin., 2021, 57: 880
1 颜孟奇, 陈立全, 杨 平 等. 热变形参数对TC18钛合金β相组织及织构演变规律的影响 [J]. 金属学报, 2021, 57: 880
doi: 10.11900/0412.1961.2020.00352
2 Xu X, Liang W P, Miao Q, et al. Effect of ZrN modified layer on friction and wear properties of TA18 titanium alloy [J]. Surf. Technol., 2021, 50(5): 133
2 许 肖, 梁文萍, 缪 强 等. ZrN改性层对TA18钛合金摩擦磨损性能的影响 [J]. 表面技术, 2021, 50(5): 133
3 Dong J J, Fan J, Zhang H B, et al. Electrochemical performance of passive film pormed on Ti-Al-Nb-Zr alloy in simulated deep sea environments [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 595
doi: 10.1007/s40195-019-00958-4
4 Wang Y H, Li X, Alexandrov I V, et al. Impact of equal channel angular pressing on mechanical behavior and corrosion resistance of hot-rolled Ti-2Fe-0.1B alloy [J]. Materials (Basel), 2020, 13: 5117
doi: 10.3390/ma13225117
5 Zhao P P, Song Y W, Dong K H, et al. Effect of passive film on the galvanic corrosion of titanium alloy Ti60 coupled to copper alloy H62 [J]. Mater. Corros., 2019, 70: 1745
6 Hu C Y, Lo S L, Kuan W H, et al. Treatment of high fluoride-content wastewater by continuous electrocoagulation-flotation system with bipolar aluminum electrodes [J]. Sep. Purif. Technol., 2008, 60: 1
doi: 10.1016/j.seppur.2007.07.040
7 Zhang C W, Fu T L, Chen H Y, et al. Research progress on crevice corrosion, plasma nitriding and surface nanocrystallization of titanium alloys [J]. Surf. Technol., 2019, 48(11): 114
7 张乘玮, 付天琳, 陈涵悦 等. 钛合金缝隙腐蚀、离子渗氮与表面纳米化的研究进展 [J]. 表面技术, 2019, 48(11): 114
8 Pang J J, Blackwood D J. Corrosion of titanium alloys in high temperature near anaerobic seawater [J]. Corros. Sci., 2016, 105: 17
doi: 10.1016/j.corsci.2015.12.011
9 Amrutha M S, Fasmin F, Ramanathan S. Effect of HF concentration on anodic dissolution of titanium [J]. J. Electrochem. Soc., 2017, 164: H188
doi: 10.1149/2.0501704jes
10 Wang Z B, Hu H X, Liu C B, et al. The effect of fluoride ions on the corrosion behavior of pure titanium in 0.05 M sulfuric acid [J]. Electrochim. Acta, 2014, 135: 526
doi: 10.1016/j.electacta.2014.05.055
11 Robin A, Meirelis J P. Influence of fluoride concentration and pH on corrosion behavior of titanium in artificial saliva [J]. J. Appl. Electrochem., 2007, 37: 511
doi: 10.1007/s10800-006-9283-z
12 Noel J J. The electrochemistry of titanium corrosion [D]. Winnipeg: University of Manitoba, 2000
13 Levy M. Anodic behavior of titanium and commercial alloys in sulfuric acid [J]. Corrosion, 1967, 23: 236
doi: 10.5006/0010-9312-23.8.236
14 Cobb J R, Uhlig H H. Resistance of titanium to sulfuric and hydrochloric acids inhibited by ferric and cupric ions [J]. J. Electrochem. Soc., 1952, 99: 13
doi: 10.1149/1.2779651
15 Stern M. The mechanism of passivating-type inhibitors [J]. J. Electrochem. Soc., 1958, 105: 638
doi: 10.1149/1.2428683
16 Liu Y, Schaller R F, Asselin E. Effect of Fe(III) and Cu(II) on the passivation of Ti-2 in acidic chloride solutions [J]. J. Electrochem. Soc., 2019, 166: C76
doi: 10.1149/2.1021902jes
17 Zhao P P, Song Y W, Shi L J, et al. Destruction of few fluorides to passive film of Ti-6Al-4V alloy under oxygen deficiency crevice conditions [J]. J. Mater. Sci., 2021, 56: 3510
doi: 10.1007/s10853-020-05456-y
18 Zhao P P, Song Y W, Dong K H, et al. Corrosion behavior of dual-phase Ti-6Al-4V alloys: A discussion on the impact of element Fe [J]. J. Alloys Compd., 2021, 858: 157708
doi: 10.1016/j.jallcom.2020.157708
19 Geng L, Qiao G Y, Gu K K. The effect of fluoride on electrochemical corrosion of the dental pure titanium before and after adhesion of Streptococcus mutans [J]. Shanghai J. Stomatol., 2016, 25: 150
pmid: 27329875
19 耿 黎, 乔广艳, 顾凯凯. 氟对变形链球菌黏附前后纯钛表面腐蚀性能的影响 [J]. 上海口腔医学, 2016, 25: 150
20 Wang Z B. Study of the critical fluoride concentration for the corrosion of pure titanium and its protective measurements in desulfurized wet flue gas environment [D]. Shenyang: University of Chinese Academy of Sciences, 2017
20 王政彬. 脱硫湿烟气环境下纯钛腐蚀的临界氟离子浓度现象及防护措施研究 [D]. 沈阳: 中国科学院大学, 2017
21 Barão V, Mathew M T, Assunção W, et al. Stability of cp-Ti and Ti-6Al-4V alloy for dental implants as a function of saliva pH—An electrochemical study [J]. Clin. Oral Implants Res., 2012, 23: 1055
doi: 10.1111/clr.2012.23.issue-9
22 Li X F, Wu X F, Liu S W, et al. Effects of fluorine on photocatalysis [J]. Chin. J Catal., 2020, 41: 1451
doi: 10.1016/S1872-2067(20)63594-X
23 Huang H H. Effects of fluoride concentration and elastic tensile strain on the corrosion resistance of commercially pure titanium [J]. Biomaterials, 2002, 23: 59
doi: 10.1016/S0142-9612(01)00079-5
24 Yue G K, Zhao L M, Olvera O G, et al. Speciation of the H2SO4-Fe2(SO4)3-FeSO4-H2O system and development of an expression to predict the redox potential of the Fe3+/Fe2+ couple up to 150oC [J]. Hydrometallurgy, 2014, 147-148: 196
doi: 10.1016/j.hydromet.2014.05.008
25 Liang Y J, Che Y C. Handbook of Thermodynamics of Inogranic Substances [M]. Shenyang: Northeastern University Press, 1993: 616
25 梁英教, 车荫昌. 无机物热力学数据手册 [M]. 沈阳: 东北大学出版社, 1993: 616
[1] 刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.
[2] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[3] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[4] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[5] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[6] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[7] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[8] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[9] 董昕远, 雒晓涛, 李成新, 李长久. B清除大气等离子喷涂CuNi熔滴氧化物效应[J]. 金属学报, 2022, 58(2): 206-214.
[10] 彭吴擎亮, 李强, 常永勤, 王万景, 陈镇, 谢春意, 王纪超, 耿祥, 黄伶明, 周海山, 罗广南. 核聚变堆偏滤器热沉材料研究现状及展望[J]. 金属学报, 2021, 57(7): 831-844.
[11] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[12] 张婷, 李仲杰, 许浩, 董安平, 杜大帆, 邢辉, 汪东红, 孙宝德. 激光沉积法制备Ti/TNTZO层状材料及其组织性能[J]. 金属学报, 2021, 57(6): 757-766.
[13] 戴进财, 闵小华, 周克松, 姚凯, 王伟强. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能[J]. 金属学报, 2021, 57(6): 767-779.
[14] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[15] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.