Please wait a minute...
金属学报  2023, Vol. 59 Issue (2): 267-276    DOI: 10.11900/0412.1961.2021.00589
  研究论文 本期目录 | 过刊浏览 |
AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理
苗军伟1,2, 王明亮1,2(), 张爱军3, 卢一平1,2(), 王同敏2, 李廷举2
1.大连理工大学 材料科学与工程学院 辽宁省凝固控制与数字化制备技术重点实验室 大连 116024
2.大连理工大学 材料科学与工程学院 辽宁省高熵合金材料工程研究中心 大连 116024
3.中国科学院兰州化学物理研究所 中国科学院材料磨损与防护重点实验室 兰州 730000
Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature
MIAO Junwei1,2, WANG Mingliang1,2(), ZHANG Aijun3, LU Yiping1,2(), WANG Tongmin2, LI Tingju2
1.Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2.Engineering Research Center of High Entropy Alloy Materials (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
3.Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
引用本文:

苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
Junwei MIAO, Mingliang WANG, Aijun ZHANG, Yiping LU, Tongmin WANG, Tingju LI. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. Acta Metall Sin, 2023, 59(2): 267-276.

全文: PDF(3453 KB)   HTML
摘要: 

采用电磁悬浮熔炼+直接铸造的方法制备了千克级的AlCr1.3TiNi2共晶高熵合金,借助TEM、APT等表征手段分析了该合金的微观组织与成分分布,使用HT-1000摩擦试验机对比研究了该合金与GH4169镍基高温合金的高温摩擦学性能。结果表明:该共晶高熵合金具有超细的层片状共晶组织(层片间距约350 nm),其共晶两相为晶格错配度只有约2%的bcc相与L21相,L21相中还存在大量的纳米析出相;≤ 600℃时,共晶高熵合金的磨损机理以磨粒磨损为主,其磨损率均低于GH4169合金;800℃时,共晶高熵合金的磨痕表面塑性变形加剧,其摩擦系数明显高于GH4169合金,但2者的磨损率相差不大。GH4169合金高温耐磨性的提高得益于其磨损表面氧化物膜的形成,而共晶高熵合金出色的耐磨性主要与其良好的高温组织稳定性及力学性能有关。

关键词 高熵合金摩擦磨损高温合金共晶组织高温    
Abstract

Eutectic high-entropy alloys (EHEAs) have been explored as possible options for high-temperature applications due to their controlled microstructure and excellent mechanical properties. In particular, EHEAs possess good liquidity and castability, allowing their possibility for real-size industrial manufacturing. However, despite their importance as a structural material index, the tribological properties were rarely investigated in the EHEAs field. In this study, a kilogram-scale AlCr1.3TiNi2 EHEA was produced using electromagnetic levitation melting and direct casting approach. The EHEA's microstructure and chemical composition were investigated using a TEM and APT techniques. The AlCr1.3TiNi2 EHEA's tribological properties were examined from room temperature to 800oC using a rotational ball-on-disk tribometer (HT-1000). Meanwhile, for comparison, a GH4169 nickel-base superalloy was chosen. The corresponding wear mechanisms were also thoroughly discussed. The findings exhibit that the as-cast AlCr1.3TiNi2 EHEA, which had an ultrafine lamellar structure, consisted of a disordered bcc phase and an ordered L21 phase with lattice misfit of approximately 2%. The average interlamellar spacing was about 350 nm. Additionally, a large number of nanoprecipitates contains in the L21 lamellae central region. Below 600oC, the AlCr1.3TiNi2 EHEA's primary wear mechanism was abrasive wear, and its wear rate was lower than that of the GH4169 alloy. At 800oC, distinct plastic deformation features were observed on the worn surface of EHEA. The EHEA exhibited a much higher friction coefficient than that of the GH4169 alloy at 800oC, but their wear rates were similar. The wear resistance improvement of GH4169 alloy at high temperature was ascribed to the formation of oxide film on its worn surface, and the AlCr1.3TiNi2 EHEA's excellent wear resistance mainly resulted from good structure stability and high hot hardness. Current findings offer new insights into the industrial application of EHEA in high-temperature fields.

Key wordshigh-entropy alloy    friction and wear    superalloy    eutectic structure    high-temperature
收稿日期: 2021-12-30     
ZTFLH:  TG139  
基金资助:国家自然科学基金项目(51822402);国家自然科学基金项目(U20A20278);国家自然科学基金项目(52001051);国家重点研发计划项目(2018YFA0702901);国家重点研发计划项目(2019YFA0209901);辽宁省兴辽英才计划项目(XLYC1807047);宁波市“科技创新2025”重大专项项目(2019B10086);中国博士后科学基金项目(2021T140082)
作者简介: 苗军伟,男,1992年生,博士生
图1  铸态AlCr1.3TiNi2共晶高熵合金的微观组织
图2  AlCr1.3TiNi2共晶高熵合金的APT表征
图3  铸态AlCr1.3TiNi2共晶高熵合金和热处理态GH4169高温合金在不同测试温度的摩擦系数曲线,及2种合金在不同温度下的平均摩擦系数与磨损率
图4  AlCr1.3TiNi2共晶高熵合金在不同温度摩擦测试后磨痕表面的SEM二次电子像,及600和800℃摩擦测试后磨痕表面的Raman光谱
Fig.RegionChemical composition
41Al5.9Cr6.9Ti5.7Ni10.2Si4.8O66.5
52Al0.5Cr7.0Fe6.4Ni17.4Ti0.4Nb1.1Si4.4O62.8
3Al0.7Cr10.6Fe9.7Ni26.0Ti0.7Nb1.3Si2.1O48.9
4Al0.5Cr8.9Fe13.0Ni12.0Ti0.3Si3.2O62.1
5Al0.5Cr8.5Fe7.9Ni19.3Ti0.4Nb1.3Si0.6O61.5
66Al7.9Cr8.9Ti6.8Ni13.7O62.7
7Al6.7Cr5.4Ti4.9Ni8.0Si7.9O67.1
8Al1.9Cr13.7Fe10.6Ni23.8Nb4.0Si2.3O43.7
9Cr8.5Fe8.4Ni21.6Nb1.7Ti0.5O59.3
10Cr7.4Fe8.5Ni20.2Nb1.1O62.8
表1  图4~6中磨痕表面(阿拉伯数字标记区域)的EDS结果 (atomic fraction / %)
图5  GH4169镍基高温合金(标准热处理态)在不同温度摩擦测试后磨痕表面的SEM二次电子像,及400~800℃摩擦测试后磨痕表面的Raman光谱
图6  Si3N4球与AlCr1.3TiNi2合金和GH4169合金在不同温度下对磨后磨斑区域的SEM二次电子像
1 Tiwary C S, Pandey P, Sarkar S, et al. Five decades of research on the development of eutectic as engineering materials[J]. Prog. Mater. Sci., 2022, 123: 100793
doi: 10.1016/j.pmatsci.2021.100793
2 Chanda B, Potnis G, Jana P P, et al. A review on nano-/ultrafine advanced eutectic alloys[J]. J. Alloys Compd., 2020, 827: 154226
doi: 10.1016/j.jallcom.2020.154226
3 Lu Y P, Dong Y, Jiang H, et al. Promising properties and future trend of eutectic high entropy alloys[J]. Scr. Mater., 2020, 187: 202
doi: 10.1016/j.scriptamat.2020.06.022
4 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys[J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200 pmid: 25160691
5 Wang Y H, Yuan Y, Yu J B, et al. Design for thermal stability of nanocrystalline alloys based on high-entropy effects[J]. Acta Metall. Sin., 2021, 57: 403
doi: 10.11900/0412.1961.2020.00494
5 王一涵, 原 园, 喻嘉彬 等. 纳米晶合金热稳定性的熵调控设计[J]. 金属学报, 2021, 57: 403
doi: 10.11900/0412.1961.2020.00494
6 Li T X, Lu Y P, Cao Z Q, et al. Opportunity and challenge of refractory high-entropy alloys in the field of reactor structural materials[J]. Acta Metall. Sin., 2021, 57: 42
6 李天昕, 卢一平, 曹志强 等. 难熔高熵合金在反应堆结构材料领域的机遇与挑战[J]. 金属学报, 2021, 57: 42
7 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Prog. Mater. Sci., 2014, 61: 1
doi: 10.1016/j.pmatsci.2013.10.001
8 Lu Y P, Gao X Z, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J]. Acta Mater., 2017, 124: 143
doi: 10.1016/j.actamat.2016.11.016
9 Jiang H, Han K M, Gao X X, et al. A new strategy to design eutectic high-entropy alloys using simple mixture method[J]. Mater. Des., 2018, 142: 101
doi: 10.1016/j.matdes.2018.01.025
10 Jin X, Bi J, Zhang L, et al. A new CrFeNi2Al eutectic high entropy alloy system with excellent mechanical properties[J]. J. Alloys Compd., 2019, 770: 655
doi: 10.1016/j.jallcom.2018.08.176
11 Wu Q F, Wang Z J, Zheng T, et al. A casting eutectic high entropy alloy with superior strength-ductility combination[J]. Mater. Lett., 2019, 253: 268
doi: 10.1016/j.matlet.2019.06.067
12 Tan Y M, Li J S, Wang J, et al. Microstructure characterization of CoCrFeNiMnPdx eutectic high-entropy alloys[J]. J. Alloys Compd., 2018, 731: 600
doi: 10.1016/j.jallcom.2017.09.057
13 Jiang L, Lu Y P, Wu W, et al. Microstructure and mechanical properties of a CoFeNi2V0.5Nb0.75 eutectic high entropy alloy in as-cast and heat-treated Conditions[J]. J. Mater. Sci. Technol., 2016, 32: 245
doi: 10.1016/j.jmst.2015.08.006
14 Vikram R J, Gupta K, Suwas S. Design of a new cobalt base nano-lamellar eutectic high entropy alloy[J]. Scr. Mater., 2021, 202: 113993
doi: 10.1016/j.scriptamat.2021.113993
15 Wang M L, Lu Y P, Wang T M, et al. A novel bulk eutectic high-entropy alloy with outstanding as-cast specific yield strengths at elevated temperatures[J]. Scr. Mater., 2021, 204: 114132
doi: 10.1016/j.scriptamat.2021.114132
16 Lozinko A, Mishin O V, Yu T B, et al. Quantification of microstructure in a eutectic high entropy alloy AlCoCrFeNi2.1 [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2019, 580: 012039
17 Vo T D, Tran B, Tieu A K, et al. Effects of oxidation on friction and wear properties of eutectic high-entropy alloy AlCoCrFeNi2.1 [J]. Tribol. Int., 2021, 160: 107017
doi: 10.1016/j.triboint.2021.107017
18 Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys[J]. Acta Mater., 2013, 61: 4887
doi: 10.1016/j.actamat.2013.04.058
19 Miao J W, Yao H W, Wang J, et al. Surface modification for AlCoCrFeNi2.1 eutectic high-entropy alloy via laser remelting technology and subsequent aging heat treatment[J]. J. Alloys Compd., 2022, 894: 162380
doi: 10.1016/j.jallcom.2021.162380
20 Jiao W N, He J Y, Li T X, et al. Microstructure and mechanical properties of bulk annealed AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Int. J. Comput. Mater. Sci. Surf. Eng., 2021, 10: 57
21 He F, Wang Z J, Shang X L, et al. Stability of lamellar structures in CoCrFeNiNbx eutectic high entropy alloys at elevated temperatures[J]. Mater. Des., 2016, 104: 259
doi: 10.1016/j.matdes.2016.05.044
22 Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys[J]. Acta Mater., 2011, 59: 6308
doi: 10.1016/j.actamat.2011.06.041
23 Kasar A K, Scalaro K, Menezes P L. Tribological properties of high-entropy alloys under dry conditions for a wide temperature range—A review[J]. Materials, 2021, 14: 5814
doi: 10.3390/ma14195814
24 Chen M, Lan L W, Shi X H, et al. The tribological properties of Al0.6CoCrFeNi high-entropy alloy with the σ phase precipitation at elevated temperature[J]. J. Alloys Compd., 2019, 777: 180
doi: 10.1016/j.jallcom.2018.10.393
25 Song Q T, Xu Y K, Xu J. Dry-sliding wear behavior of (TiZrNb-Ta)90Mo10 high-entropy alloy against Al2O3 [J]. Acta Metall. Sin., 2020, 56: 1507
25 宋芊汀, 徐映坤, 徐 坚. (TiZrNbTa)90Mo10高熵合金与Al2O3干摩擦条件下的滑动磨损行为[J]. 金属学报, 2020, 56: 1507
26 Joseph J, Haghdadi N, Shamlaye K, et al. The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures[J]. Wear, 2019, 428-429: 32
doi: 10.1016/j.wear.2019.03.002
27 Chang Y J, Yeh A C. The evolution of microstructures and high temperature properties of AlxCo1.5CrFeNi1.5Ti y high entropy alloys[J]. J. Alloys Compd., 2015, 653: 379
doi: 10.1016/j.jallcom.2015.09.042
28 Yu Y, He F, Qiao Z H, et al. Effects of temperature and microstructure on the triblogical properties of CoCrFeNiNbx eutectic high entropy alloys[J]. J. Alloys Compd., 2019, 775: 1376
doi: 10.1016/j.jallcom.2018.10.138
29 Miao J W, Liang H, Zhang A J, et al. Tribological behavior of an AlCoCrFeNi2.1 eutectic high entropy alloy sliding against different counterfaces[J]. Tribol. Int., 2021, 153: 106599
doi: 10.1016/j.triboint.2020.106599
30 Feng R, Gao M C, Zhang C, et al. Phase stability and transformation in a light-weight high-entropy alloy[J]. Acta Mater., 2018, 146: 280
doi: 10.1016/j.actamat.2017.12.061
31 Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
32 Zhang A J, Han J S, Su B, et al. Tribological properties of AlCoCrFeNi high entropy alloy at elevated temperature[J]. Tribology, 2017, 37: 776
32 张爱军, 韩杰胜, 苏 博 等. AlCoCrFeNi高熵合金的高温摩擦磨损性能[J]. 摩擦学学报, 37: 776
33 Liu H L, Liu X H, Ji L, et al. Wide temperature range tribological property of Inconel 718 high-temperature alloy[J]. Tribology, 2018, 38: 274
33 刘红利, 刘晓红, 吉 利 等. 高温氧化处理前后Inconel 718高温合金摩擦学性能的探究[J]. 摩擦学学报, 2018, 38: 274
34 Jose B, Parthasarathi N L, Arivazhagan N, et al. Study of dry sliding wear and contact mechanism of Inconel 718 at high temperature[J]. J. Manuf. Eng., 2018, 13(2): 63
35 Pei X H, Du Y, Hao X X, et al. Microstructure and tribological properties of TiZrV0.5Nb0.5Alx refractory high entropy alloys at elevated temperature[J]. Wear, 2022, 488-489: 204166
doi: 10.1016/j.wear.2021.204166
36 Menezes P L, Nosonovsky M, Ingole S P, et al. Tribology for Scientists and Engineers[M]. New York: Springer, 2013: 69
[1] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[4] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[8] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[9] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[10] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[11] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[12] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[13] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[14] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[15] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.