Please wait a minute...
金属学报  2022, Vol. 58 Issue (2): 241-249    DOI: 10.11900/0412.1961.2020.00495
  研究论文 本期目录 | 过刊浏览 |
CuInconel 718合金Nb偏析影响机理的第一性原理研究
李亚敏(), 张瑶瑶, 赵旺, 周生睿, 刘洪军
兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050
First-Principles Study on the Effect of Cu on Nb Segregation in Inconel 718 Alloy
LI Yamin(), ZHANG Yaoyao, ZHAO Wang, ZHOU Shengrui, LIU Hongjun
State Key Laboratory of Advanced Processing and Reuse of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
引用本文:

李亚敏, 张瑶瑶, 赵旺, 周生睿, 刘洪军. CuInconel 718合金Nb偏析影响机理的第一性原理研究[J]. 金属学报, 2022, 58(2): 241-249.
Yamin LI, Yaoyao ZHANG, Wang ZHAO, Shengrui ZHOU, Hongjun LIU. First-Principles Study on the Effect of Cu on Nb Segregation in Inconel 718 Alloy[J]. Acta Metall Sin, 2022, 58(2): 241-249.

全文: PDF(1834 KB)   HTML
摘要: 

采用第一性原理计算与实验相结合的方法探究了Cu元素掺杂所造成的元素之间的交互作用对Inconel 718合金Nb偏析的影响。构建了掺杂前后Ni-Fe-Cr-Nb超晶胞模型,计算了掺杂前后各体系的形成热、结合能、态密度、差分电荷密度以及布居分布。计算结果表明,Cu原子的掺杂降低了体系的稳定性;掺杂改变了体系中元素之间的交互作用,影响了原子之间的键合强度及电荷密度分布,Cu的添加增加了基体中Fe原子和Cr原子之间的结合力,但同时也增加了Fe原子和Nb原子之间的排斥力。实验结果表明,微量Cu元素的加入降低了Fe和Cr的偏析,但促进了Nb元素的偏析。第一性原理计算和实验结果表明,Cu掺杂后Nb原子与周围Fe原子间排斥力的增加是Cu促进Nb偏析的本质原因。

关键词 Inconel 718合金合金元素交互作用Nb偏析机理第一性原理    
Abstract

Inconel 718 alloy is an Fe-Ni based superalloy precipitation-strengthened by γ″ phase (Ni3Nb) and γ′ phase (Ni3(AlTi)). It has been widely used in aviation, energy, chemicals, and other fields because of its outstanding mechanical properties, resistance to high-temperature oxidation, and corrosion resistance. Because the mechanical properties of Inconel 718 alloy are primarily determined by the γ″ precipitates, Nb becomes one of the most important alloying elements. Due to the high content, large atomic radius, and small partition coefficient of Nb, Nb segregation occurs easily during the solidification process of casting, welding, and laser cladding. The segregation drastically degrades mechanical properties and increases the difficulty of subsequent heat treatment. The composition of Inconel 718 alloy comprises many elements, and some trace elements are inevitably introduced from the raw materials. The interaction of the elements has a certain effect on Nb segregation. In this study, the effect of the interaction of elements caused by doping of Cu on Nb segregation in Inconel 718 alloy was studied by first-principles calculation and experiment. The Ni-Fe-Cr-Nb supercell model was constructed with and without Cu doping. The enthalpy of formation, cohesive energy, state density, electron density difference, and population analysis was calculated. The calculation results show that the doping of Cu reduces the stability of the system. Doping will change the interaction between elements and affects the strength and density distribution ratio of the charged density between atomic bonds in the system. The addition of Cu increases the bond strength between the Fe atoms and Cr atoms and the repulsive force between Fe atoms and Nb atoms in the matrix. The experimental results show that the addition of 0.1%Cu (mass fraction) decreases the segregation of Fe and Cr, but promotes the segregation of Nb. Experimental results and first-principles calculations show that the increase in the repulsive force between the Nb atom and Fe atom, which is caused by the interaction between the alloying elements after doping with Cu, is the essential reason for Cu to promote Nb segregation.

Key wordsInconel 718 alloy    alloying element interaction    Nb segregation mechanism    first principle
收稿日期: 2020-12-08     
ZTFLH:  TG146.1  
基金资助:省部共建有色金属先进加工与再利用国家重点实验室开放基金项目(SKLAB02019014)
作者简介: 李亚敏,女,1973年生,副教授,博士
AlloyCAlTiNbMoCrNiCuFe
No.0≤ 0.050.551.055.403.0518.452.000.00Bal.
No.1≤ 0.050.551.055.403.0518.452.000.10Bal.
表1  实验合金的名义化学成分 (mass fraction / %)
图1  计算用超晶胞模型(a) γ matrix (b) Ni-Fe-Cr-Nb (c) Ni18Fe6Cr6Cu
Formulaa / nmb / nmc / nmα / (°)β / (°)γ / (°)V / nm3
Ni20Fe6Cr60.69880.70860.704190.003489.998290.00580.3487
Ni19Fe6Cr6Nb0.70630.71140.708190.001889.999090.00580.3558
Ni18Fe6Cr6NbCu0.70770.71240.706789.008190.001090.00100.3563
表2  各超晶胞的平衡晶格常数
FormulaFormation enthalpy / (eV·atom-1)Cohesive energy / (eV·atom-1)Total energy / eV
Ni19Fe6Cr6Nb-81.6314-10.3420-47349.2553
Ni18Fe6Cr6NbCu-81.6141-10.2053-47470.1808
表3  计算体系的形成热与结合能
图2  掺杂前后体系的态密度图(a) Ni19Fe6Cr6Nb (b) Ni18Fe6Cr6NbCu
图3  掺杂前后体系(010)面的电荷差分密度图(a) Ni19Fe6Cr6Nb (b) Ni18Fe6Cr6NbCu
SystemAtomspdTotalCharge
Ni19Fe6Cr6NbNi0.580.828.6510.05-0.04
Fe0.500.646.737.870.13
Cr2.666.534.9714.16-0.18
Nb2.675.313.9311.911.09
Ni18Fe6Cr6NbCuNi0.580.818.6510.04-0.04
Fe0.490.626.737.850.17
Cr2.656.534.9814.16-0.15
Cu0.790.989.6211.39-0.39
Nb2.695.333.9311.951.05
表4  掺杂前后各体系的原子布居数
AtomNi19Fe6Cr6NbNi18Fe6Cr6NbCu
PopulationLength / nmPopulationLength / nm
Fe-Ni0.190.2510860.200.251930
Cr-Fe-0.020.2475380.030.248490
Cr-Ni0.040.2507890.050.250421
Ni-Ni0.190.2500510.190.250101
Fe-Nb-0.170.258629-0.180.257657
Ni-Nb-0.130.253356-0.130.253710
Ni-Cu--0.130.250674
Cr-Cu---0.160.249645
Fe-Cu--0.110.244092
表5  掺杂前后各体系的重叠聚居数
图4  添加Cu前后铸态Inconel 718合金的XRD谱(a) No.0 alloy (b) No.1 alloy
图5  掺杂Cu前后铸态Inconel 718合金显微组织的OM像(a) No.0 alloy (b) No.1 alloy
图6  掺杂Cu前后铸态Inconel 718合金显微组织的SEM像(a) No.0 alloy (b) No.1 alloy
AlloyAreaNiNbAlTiCrFeMoCu
No.0Matrix51.743.760.390.7220.6819.932.78-
Segregation zone51.907.590.261.3118.5617.353.03-
Laves phase46.4615.53-1.2316.9415.664.18-
No.1Matrix48.791.940.420.2921.2524.223.020.08
Segregation zone45.524.690.460.2920.9222.093.840.18
Laves phase37.1523.040.150.3114.2914.7810.00.29
表6  铸态Inconel 718合金不同区域EDS分析结果 (mass fraction / %)
1 Pereira J M , Lerch B A . Effects of heat treatment on the ballistic impact properties of Inconel 718 for jet engine fan containment applications [J]. Int. J. Impact Eng., 2001, 25: 715
2 Qi H . Review of INCONEL 718 alloy: Its history, properties, processing and developing substitutes [J]. J. Mater. Eng., 2012, (8): 92
2 齐 欢 . INCONEL 718(GH4169)高温合金的发展与工艺 [J]. 材料工程, 2012, (8): 92
3 Tian Y , Zhao M C . Segregation of Nb and its formation mechanism of high strength casing steel [J]. J. Iron Steel Res., 2020, 32: 344
3 田 研, 赵明纯 . 高强度油井管钢中的Nb偏析及形成机制分析 [J]. 钢铁研究学报, 2020, 32: 344
4 Sun K , Lin H B , He Y B , et al . Microscopic inspection and improvement of GH4169G alloy forging banded structure defects [J]. Spec. Cast. Nonferrous Alloys, 2020, 40: 694
4 孙 凯, 蔺虹宾, 何跃斌 等 . GH4169G合金锻件条带缺陷微观检测及改进 [J]. 特种铸造及有色合金, 2020, 40: 694
5 Chen Y , Guo Y B , Xu M J , et al . Study on the element segregation and Laves phase formation in the laser metal deposited IN718 superalloy by flat top laser and gaussian distribution laser [J]. Mater. Sci. Eng., 2019, A754: 339
6 Zhang Y , Li X X , Wei K , et al . Element segregation in GH4169 Superalloy large-scale ingot and billet manufactured by triple-melting [J]. Acta Metall. Sin., 2020, 56: 1123
6 张 勇, 李鑫旭, 韦 康 等 . 三联熔炼GH4169合金大规格铸锭与棒材元素偏析行为 [J]. 金属学报, 2020, 56: 1123
7 DuPont J N , Rohino C V . The influence of Nb and C on the solidification microstructures of Fe-Ni-Cr alloys [J]. Scr. Mater., 1999, 41: 449
8 Li A L , Tang X , Gai Q D , et al . Effect of heat treatment on microstructure of K4169 superalloy [J]. J. Aeronaut. Mater., 2006, 26: 311
8 李爱兰, 汤 鑫, 盖其东 等 . 热处理工艺对K4169合金微观组织的影响 [J]. 航空材料学报, 2006, 26: 311
9 Long Y T , Nie P L , Li Z G , et al . Segregation of niobium in laser cladding Inconel 718 superalloy [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 431
10 Zhang M C , Zheng L , Yao Z H , et al . Effect of Nb content on micro-segregation evolution of GH4169 ingots [J]. Hot Work. Technol., 2013, 42(10): 45
10 张麦仓, 郑 磊, 姚志浩 等 . Nb含量对GH4169合金钢锭偏析规律的影响 [J]. 热加工工艺, 2013, 42(10): 45
11 Mo Y , Wang D Z , Jiang B , et al . Effect of micro alloying vanadium on micro-segregation behavior of niobium in 718 alloy [J]. Heat Treat. Met., 2017, 42(4): 37
11 莫 燕, 王东哲, 蒋 斌 等 . 钒微合金化对718合金中铌元素偏析行为的影响 [J]. 金属热处理, 2017, 42(4): 37
12 Sun W R , Guo S R , Lu D Z , et al . Effect of Si on solidification and segregation in Inconel 718 alloy [J]. J. Aeronaut. Mater., 1996, 16(2): 7
12 孙文儒, 郭守仁, 卢德忠 等 . Si对In718合金凝固过程及元素偏析的影响 [J]. 航空材料学报, 1996, 16(2): 7
13 Meng F X , Li J H , Zhao X . First-principles study on the effects of Zn-segregation in CuΣ5 grain boundary [J]. Acta Phys. Sin., 2014, 63: 237102
13 孟凡顺, 李久会, 赵 星 . 第一性原理研究Zn偏析对CuΣ5晶界的影响 [J]. 物理学报, 2014, 63: 237102
14 Wang J L , Enomoto M , Shang C J . First-principles study on the interfacial segregation at coherent Cu precipitate/Fe matrix interface [J]. Scr. Mater., 2020, 185: 42
15 Peng L J . Study on microstructure evolution of Cu-Cr-Zr system alloys and interaction mechanism between alloying elements [D]. Beijing: General Research Institute for Nonferrous Metals, 2014
15 彭丽军 . Cu-Cr-Zr系合金微观组织演变规律及合金元素交互作用机理的研究 [D]. 北京: 北京有色金属研究总院, 2014
16 Huang Z W , Zhao Y H , Hou H , et al . Point defects structure and alloying effects of V atoms into Ni3Al alloy: A first-principles study [J]. Rare Met. Mater. Eng., 2011, 40: 2136
16 黄志伟, 赵宇宏, 侯 华 等 . V掺杂Ni3Al点缺陷结构及合金化效应的第一性原理研究 [J]. 稀有金属材料与工程, 2011, 40: 2136
17 Perdew J P , Wang Y . Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev., 1992, 45B: 13244
18 Li Y M , Jiang L , Zhao W , et al . First-principle study of the effects of Cu doped on γ' phase [J]. Mater. Rev., 2019, 33: 3085
18 李亚敏, 江 璐, 赵 旺 等 . 铜掺杂对γ′相影响的第一性原理研究 [J]. 材料导报, 2019, 33: 3085
19 Zhao Y H , Huang Z W , Li A H , et al . First principles study on substitution behavior and alloying effects of Nb in Ni3Al [J]. Acta Phys. Sin., 2011, 60: 047103
19 赵宇宏, 黄志伟, 李爱红 等 . Nb在Ni3Al中取代行为及合金化效应的第一性原理研究 [J]. 物理学报, 2011, 60: 047103
20 Zhang X Y , Zheng B J , Guo B , et al . Theoretical study on bonding characteristics of Cr, Mn, Mo and N in high nitrogen austenitic stainless steel [J]. Mater. Rev., 2017, 31(18): 146
20 张旭昀, 郑冰洁, 郭 斌 等 . 高氮奥氏体不锈钢中N与Cr、Mn、Mo键合性质研究 [J]. 材料导报, 2017, 31(18): 146
21 Chen Z M , Yu W Q . Principle of Solidification of Casting Metal [M]. Beijing: Peking University Press, 2014: 116
21 陈宗民, 于文强 . 铸造金属凝固原理 [M]. 北京: 北京大学出版社, 2014: 116
22 Hu Z Q , Sun W R , Guo S R , et al . Effect of trace P on Fe-Ni based wrought superalloy [J]. Chin. J. Nonferrous Met., 2001, 11: 947
22 胡壮麒, 孙文儒, 郭守仁 等 . 微量元素磷在铁镍基变形高温合金中的作用 [J]. 中国有色金属学报, 2001, 11: 947
23 Xu Z L . Performance, Strength Design and Engineering Application of High Temperature Metal Materials [M]. Beijing: Chemical Industry Press, 2006: 77
23 徐自立 . 高温金属材料的性能、强度设计及工程应用 [M]. 北京: 化学工业出版社, 2006: 77
24 Zhang Q C . A new type of turbine disc and blade material—low segregation superalloy [J]. Aeroengine, 1995, (2): 14
24 张庆春 . 新型涡轮盘及叶片材料——低偏析高温合金 [J]. 航空发动机, 1995, (2): 14
25 Zhu Y X . Low segregation superalloys [J]. Trans. Mater. Heat Treat., 1997, 18(3): 16
25 朱耀霄 . 低偏析高温合金 [J]. 金属热处理学报, 1997, 18(3): 16
26 Wang A C , Li Y Y , Li D F , et al . Effect of Nb and Ti contents on micro-segregation of J-90 alloy [J]. Acta Metall. Sin., 1995, 31: 216
26 王安川, 李依依, 李冬法 等 . Nb, Ti含量对J-90合金凝固偏析的影响 [J]. 金属学报, 1995, 31: 216
[1] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[2] 徐磊, 田晓生, 吴杰, 卢正冠, 杨锐. 热等静压成形Inconel 718粉末合金的显微组织和力学性能[J]. 金属学报, 2023, 59(5): 693-702.
[3] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[4] 任师浩, 刘永利, 孟凡顺, 祁阳. 应变工程中Bi(111)薄膜的半导体-半金属转变及其机理[J]. 金属学报, 2022, 58(7): 911-920.
[5] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[6] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[7] 毛斐, 吕皓, 唐法威, 郭凯, 刘东, 宋晓艳. MnIn添加对SmCo7结构稳定性及磁矩影响的第一性原理计算[J]. 金属学报, 2021, 57(7): 948-958.
[8] 崔洋, 李寿航, 应韬, 鲍华, 曾小勤. 基于第一性原理的金属导热性能研究[J]. 金属学报, 2021, 57(3): 375-384.
[9] 张海军, 邱实, 孙志梅, 胡青苗, 杨锐. 无序β-Ti1-xNbx合金自由能及弹性性质的第一性原理计算:特殊准无序结构和相干势近似的比较[J]. 金属学报, 2020, 56(9): 1304-1312.
[10] 盖逸冰, 唐法威, 侯超, 吕皓, 宋晓艳. 合金化元素对W-Cu体系多类界面特征影响的第一性原理计算[J]. 金属学报, 2020, 56(7): 1036-1046.
[11] 高翔, 张桂凯, 向鑫, 罗丽珠, 汪小琳. 合金元素对V(110)表面O吸附影响的第一性原理研究[J]. 金属学报, 2020, 56(6): 919-928.
[12] 白静, 石少锋, 王锦龙, 王帅, 赵骧. Ni-Mn-Ga-Ti铁磁形状记忆合金的相稳定性和磁性能的第一性原理计算[J]. 金属学报, 2019, 55(3): 369-375.
[13] 董彩虹, 刘永利, 祁阳. 厚度对Bi薄膜表面特性和电学性质的影响[J]. 金属学报, 2018, 54(6): 935-942.
[14] 周刚, 叶荔华, 王皞, 徐东生, 孟长功, 杨锐. 六角结构金属中基面/柱面取向转变的孪晶路径及合金化效应的第一性原理研究[J]. 金属学报, 2018, 54(4): 603-612.
[15] 刘永长, 张宏军, 郭倩颖, 周晓胜, 马宗青, 黄远, 李会军. Inconel 718变形高温合金热加工组织演变与发展趋势[J]. 金属学报, 2018, 54(11): 1653-1664.