Please wait a minute...
金属学报  2021, Vol. 57 Issue (8): 1039-1047    DOI: 10.11900/0412.1961.2020.00315
  研究论文 本期目录 | 过刊浏览 |
高速钢表面TiN薄膜的界面疲劳剥落行为
邱龙时1,2, 赵婧1, 潘晓龙1(), 田丰1
1.西安稀有金属材料研究院有限公司 西安 710016
2.西安交通大学 金属材料强度国家重点实验室 西安 710049
Interfacial Fatigue Spalling Behavior of TiN Films on High Speed Steel
QIU Longshi1,2, ZHAO Jing1, PAN Xiaolong1(), TIAN Feng1
1.Xi'an Rare Metal Materials Institute Co. , Ltd. , Xi'an 710016, China
2.State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
引用本文:

邱龙时, 赵婧, 潘晓龙, 田丰. 高速钢表面TiN薄膜的界面疲劳剥落行为[J]. 金属学报, 2021, 57(8): 1039-1047.
Longshi QIU, Jing ZHAO, Xiaolong PAN, Feng TIAN. Interfacial Fatigue Spalling Behavior of TiN Films on High Speed Steel[J]. Acta Metall Sin, 2021, 57(8): 1039-1047.

全文: PDF(10898 KB)   HTML
摘要: 

采用多弧离子镀技术在M2高速钢(W6Mo5Cr4V2)表面制备TiN薄膜,利用滚动接触疲劳法对薄膜界面疲劳行为开展研究。结果表明,界面疲劳失效主要表现形式为薄膜剥落,疲劳裂纹最先萌生于膜/基界面,经一定周次后向薄膜表面偏折,最终造成薄膜剥落。界面最大剪切应力幅(Δτinter)是控制界面裂纹萌生和扩展的主要力学参量,通过Δτinter和临界疲劳周次(N)构建的评价模型可有效用于薄膜界面疲劳性能表征和寿命预估。界面疲劳性能与膜/基界面状态密切相关,利用Δτinter-N评价模型可有效辨别界面状态间的差异,采用辉光清洗或预制金属打底层等预处理方式均能有效提升界面抗疲劳剥落性能。选取薄膜剥落面积比为5%和50%,以及失效概率为30%、60%和90%比较发现,薄膜剥落面积比和失效概率值大小的选取不影响膜/基界面疲劳性能的判定。研究结果为镀膜轴承等零部件的疲劳性能表征和寿命预估提供了重要理论参考。

关键词 气相沉积硬质薄膜滚动接触界面疲劳剥落    
Abstract

Performance and fatigue life of coating parts are seriously restricted by their interfacial fatigue property. Herein, TiN films were deposited on W6Mo5Cr4V2 steel substrates by multiarc ion plating. The interfacial fatigue failure mechanisms were studied by the rolling contact fatigue method. The results show that the interfacial fatigue failure mode is mainly film spalling. The fatigue cracks generated initially at the film/substrate interface proceed to the surface, resulting in film spalling. The interfacial maximum shear stress amplitude (Δτinter) is a key factor for controlling interfacial crack initiation and propagation. The evolution model built using Δτinter and critical cycles (N) can be used to determine interfacial fatigue performance and for life forecast. The interfacial fatigue property is determined using a film/substrate interface, and glow discharge cleaning and prefabricated metal layer before coating deposition can improve interface fatigue performance. The evaluation model based on Δτinter-N curves can effectively used to identify the differences in interface states. Selection of the film-spalling area ratios of 5% and 50% and failure probabilities of 30%, 60%, and 90% have little effect on the determination of film/substrate interfacial fatigue performance. The results provide important theoretical references for fatigue performance determination and lifespan prediction of coated bearings and other parts.

Key wordsvapor deposition    hard film    rolling contact    interfacial fatigue    spalling
收稿日期: 2020-08-19     
ZTFLH:  TG172.44  
基金资助:陕西省自然科学基础研究计划项目(2020JQ-924);西安市博士后创新基地项目
作者简介: 邱龙时,男,1988年生,博士
Filmt / μmInterfacial stateLc / NPc / NHv / GPa
TiN1.6GD-20 min + Ti*-10 min> 100> 100024.5 ± 0.5
TiN3.7GD-5 min + Ti*-0 min3040024.0 ± 0.7
TiN3.7GD-10 min + Ti*-5 min90100023.8 ± 0.8
TiN3.7GD-20 min + Ti*-10 min> 100> 100024.7 ± 0.4
表1  TiN薄膜制备参数及力学性能
图1  滚动接触疲劳试验机示意图(a) loading unit image(b) working mechanism of loading unit(c) loading rendering
图2  TiN薄膜表面和截面SEM像
图3  TiN薄膜的滚动接触疲劳失效形貌的SEM像及EDS分析(a) surface morphology (b) cross section morphology of none peeling area (c) EDS analysis
图4  TiN薄膜滚动接触失效区形貌和轮廓(a) surface OM image (b) 3D surface morphology (c) cross section profile along the line in Fig.4a
图5  TiN薄膜界面裂纹扩展过程(a) the crack extends along the interface (b) the crack deflects towards the surface
图6  界面疲劳剥落机制图
图7  滚动接触下应力分布情况
图8  不同失效面积比对S-N曲线的影响

F

N

Δτinter

GPa

L30

106 cyc

L60

106 cyc

L90

106 cyc

200.9680.3150.5580.825
251.0300.2350.4160.636
301.1250.1980.3200.475
351.2080.1750.2870.398
表2  不同外载下TiN薄膜的寿命参数
PCm
30% (L30)0.274.72
60% (L60)0.484.68
90% (L90)0.724.16
表3  不同失效概率下S-N曲线参数
图9  不同失效概率下TiN薄膜的S-N曲线
图10  不同界面状态对TiN薄膜界面疲劳性能的影响
1 Stewart S, Ahmed R. Rolling contact fatigue of surface coatings—A review [J]. Wear, 2002, 253: 1132
2 Piao Z Y, Xu B S, Wang H D, et al. Investigation of fatigue failure prediction of Fe-Cr alloy coatings under rolling contact based on acoustic emission technique [J]. Appl. Surf. Sci., 2011, 257: 2581
3 Colombo D A, Echeverría M D, Laino S, et al. Rolling contact fatigue resistance of PVD CrN and TiN coated austempered ductile iron [J]. Wear, 2013, 308: 35
4 Mayrhofer P H, Mitterer C, Hultman L, et al. Microstructural design of hard coatings [J]. Prog. Mater. Sci., 2006, 51: 1032
5 Musil J. Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness [J]. Surf. Coat. Technol., 2012, 207: 50
6 Santecchia E, Hamouda A M S, Musharavati F, et al. Wear resistance investigation of titanium nitride-based coatings [J]. Ceram. Int., 2015, 41: 10349
7 Kuhn M, Gold P W, Loos J. Wear and friction characteristics of PVD-coated roller bearings [J]. Surf. Coat. Technol., 2004, 177-178: 469
8 Mutyala K C, Singh H, Evans R D, et al. Effect of deposition method on the RCF performance of CrxN thin film ball coatings [J]. Surf. Coat. Technol., 2016, 305: 176
9 Liu H X, Jiang Y H, Zhou R, et al. Rolling contact fatigue life and mechanical property of TiN film fabricated by plasma immersion ion implantation and deposition [J]. Acta Metall. Sin., 2008, 44: 325
9 刘洪喜, 蒋业华, 周 荣等. 等离子体浸没离子注入与沉积合成TiN薄膜的滚动接触疲劳寿命和机械性能 [J]. 金属学报, 2008, 44: 325
10 Qiu L S, Qiao G L, Ma F, et al. Study on residual stress modulation and mechanical properties of titanium nitride coatings [J]. J. Mech. Eng., 2017, 53(24): 42
10 邱龙时, 乔关林, 马 飞等. TiN薄膜的残余应力调控及力学性能研究 [J]. 机械工程学报, 2017, 53(24): 42
11 Oettel H, Wiedemann R. Residual stresses in PVD hard coatings [J]. Surf. Coat. Technol., 1995, 76-77: 265
12 Colombo D A, Echeverría M D, Dommarco R C, et al. Influence of TiN coating thickness on the rolling contact fatigue resistance of austempered ductile iron [J]. Wear, 2016, 350-351: 82
13 Colombo D A, Massone J M, Echeverría M D, et al. Rolling contact fatigue behavior of Ti/TiN coated ADI by cathodic arc deposition [J]. Ceram. Int., 2017, 43: 4263
14 Vera E E, Vite M, Gallardo E A, et al. Fatigue life of TiN and CrN coatings in rolling contact [J]. Proc. Inst. Mech. Eng., 2013, 227J: 339
15 Polonsky I A, Keer L M. Numerical analysis of the effect of coating microstructure on three-dimensional crack propagation in the coating under rolling contact fatigue conditions [J]. J. Tribol., 2002, 124: 14
16 Polonsky I A, Chang T P, Keer L M, et al. An analysis of the effect of hard coatings on near-surface rolling contact fatigue initiation induced by surface roughness [J]. Wear, 1997, 208: 204
17 Xu B S, Wang H D, Piao Z Y, et al. Investigation of structural integrity and life time prediction of the thermal sprayed alloy coating for remanufacturing [J]. Acta Metall. Sin., 2011, 47: 1355
17 徐滨士, 王海斗, 朴钟宇等. 再制造的热喷涂合金涂层的结构完整性与服役寿命预测研究 [J]. 金属学报, 2011, 47: 1355
18 Qiu L S, Zhu X D, Lu S, et al. Evaluation of hard-coating/substrate interfacial adhesion in rolling contact fatigue method under elastic-plastic deformation [J]. Chin. J. Vacuum Sci. Technol., 2015, 35: 1380
18 邱龙时, 朱晓东, 鲁 莎等. 基于弹塑性滚动接触疲劳法评价硬质薄膜结合强度 [J]. 真空科学与技术学报, 2015, 35: 1380
19 Qiu L S, Ma S L, Xu K W. Dynamicfailure mechanism and evaluation method of TiN hard coatings deposited by multi-arc ion plating (MAIP) [J]. Mater. Prot., 2014, 47(suppl.2): 109
19 邱龙时, 马胜利, 徐可为. 多弧离子镀制备TiN镀层的动态失效机制及评价方式 [J]. 材料保护, 2014, 47(): 109
20 Qiu L S, Zhu X D, Lu S, et al. Quantitative evaluation of bonding strength for hard coatings by interfacial fatigue strength under cyclic indentation [J]. Surf. Coat. Technol., 2017, 315: 303
21 Thornton J A. High rate thick film growth [J]. Ann. Rev. Mater. Sci., 1977, 7: 239
22 Xie Z H, Hoffman M, Munroe P, et al. Microstructural response of TiN monolithic and multilayer coatings during microscratch testing [J]. J. Mater. Res., 2007, 22: 2312
23 Piao Z Y, Xu B S, Wang H D, et al. A separation of experimental study on coatings failure signal responses under rolling contact [J]. Tribol. Int., 2011, 44: 1304
24 Hogmark S, Hedenqvist P. Tribological characterization of thin, hard coatings [J]. Wear, 1994, 179: 147
25 Way S. Pitting due to rolling contact [J]. J. Appl. Mech., 1935, 2: A49
26 Qiu L, Zhu X, He G, et al. The repeated spherical indentation test: An efficient way to evaluate the adhesion of hard coatings [J]. Surf. Eng., 2016, 32: 578
27 Qiu L S, Zhu X D, Xu K W. Internal stress on adhesion of hard coatings synthesized by multi-arc ion plating [J]. Surf. Coat. Technol., 2017, 332: 267
28 Zhang X C, Xu B S, Wang H D, et al. Hertzian contact response of single-layer, functionally graded and sandwich coatings [J]. Mater. Des., 2007, 28: 47
29 Gerth J, Wiklund U. The influence of metallic interlayers on the adhesion of PVD TiN coatings on high-speed steel [J]. Wear, 2008, 264: 885
[1] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[2] 吴玉程, 高志强, 徐光青, 刘家琴, 轩海成, 刘友好, 衣晓飞, 陈静武, 韩培德. 烧结NdFeB永磁材料腐蚀与防护的研究现状及挑战[J]. 金属学报, 2021, 57(2): 171-181.
[3] 李吉臣, 冯迪, 夏卫生, 林高用, 张新明, 任敏文. 非等温时效对7B50铝合金组织及性能的影响[J]. 金属学报, 2020, 56(9): 1255-1264.
[4] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[5] 李吉臣, 冯迪, 夏卫生, 郭为民, 王国迎. 7055铝合金的非等温双级时效行为[J]. 金属学报, 2020, 56(11): 1495-1506.
[6] 申造宇,何利民,黄光宏,牟仁德,顾金旺,刘维众. TiAl/Ti3Al超薄多层复合材料的微观结构与力学性能*[J]. 金属学报, 2016, 52(12): 1579-1585.
[7] 刘渊, 刘祥萱, 王煊军, 陈鑫. MOCVD方法在SrFe12O19表面生长Fe薄膜及其吸波性能[J]. 金属学报, 2014, 50(9): 1095-1101.
[8] 刘宏基, 孙俊杰, 江涛, 郭生武, 柳永宁, 林鑫. 一种超高碳钢的滚动接触疲劳研究[J]. 金属学报, 2014, 50(12): 1446-1452.
[9] 李永奎, 陈俊丹, 陆善平. 42CrMo钢车轮锻件在淬火过程中的残余应力研究*[J]. 金属学报, 2014, 50(1): 121-128.
[10] 徐锋; 左敦稳; 卢文壮; 王珉 . 纳米金刚石薄膜的微结构和残余应力[J]. 金属学报, 2008, 44(1): 74-78 .
[11] 赵升升; 华伟刚; 杜昊; 宫骏; 孙超; 李家宝 . 一种测量硬质薄膜残余应力的新方法[J]. 金属学报, 2008, 44(1): 125-128 .
[12] 陈立强; 宫声凯; 徐惠彬 . 垂直裂纹对EB-PVD热障涂层热循环失效模式的影响[J]. 金属学报, 2005, 41(9): 979-984 .
[13] 李建国; 刘实; 李依依; 胡东平; 季锡林; 梅军 ; 周德惠 . 热丝化学气相沉积金刚石薄膜空间场的数值分析[J]. 金属学报, 2005, 41(4): 437-443 .
[14] 窦鹏; 李友国; 梁开明 . 中碳贝氏体支承辊钢低应力牵引滚动接触下的疲劳短裂纹行为[J]. 金属学报, 2005, 41(2): 140-144 .
[15] 李铸国; 华学明; 吴毅雄; 三宅正司 . 低能离子束辅照对溅射镀TiN膜生长的影响[J]. 金属学报, 2005, 41(10): 1087-1090 .