Please wait a minute...
金属学报  2014, Vol. 50 Issue (12): 1446-1452    DOI: 10.11900/0412.1961.2014.00260
  本期目录 | 过刊浏览 |
一种超高碳钢的滚动接触疲劳研究
刘宏基1, 孙俊杰1, 江涛1, 郭生武1, 柳永宁1(), 林鑫2
1 西安交通大学材料科学与工程学院金属材料强度国家重点实验室, 西安 710049
2 西北工业大学材料科学与工程学院, 西安 710072
ROLLING CONTACT FATIGUE BEHAVIOR OF AN ULTRAHIGH CARBON STEEL
LIU Hongji1, SUN Junjie1, JIANG Tao1, GUO Shengwu1, LIU Yongning1(), LIN Xin2
1 State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering,Xi′an Jiaotong University, Xi′an 710049
2 School of Materials Science and Engineering, Northwestern Polytechnical University, Xi′an 710072
引用本文:

刘宏基, 孙俊杰, 江涛, 郭生武, 柳永宁, 林鑫. 一种超高碳钢的滚动接触疲劳研究[J]. 金属学报, 2014, 50(12): 1446-1452.
Hongji LIU, Junjie SUN, Tao JIANG, Shengwu GUO, Yongning LIU, Xin LIN. ROLLING CONTACT FATIGUE BEHAVIOR OF AN ULTRAHIGH CARBON STEEL[J]. Acta Metall Sin, 2014, 50(12): 1446-1452.

全文: PDF(6778 KB)   HTML
摘要: 

研究了一种C含量为1.29% (质量分数)的超高碳钢在最大Hertzian应力4400 MPa, 良好润滑条件下的滚动接触疲劳行为, 同时测试了传统GCr15和SKF3高碳铬轴承钢的滚动接触疲劳寿命以作为对比. 结果表明, 相同条件下, 超高碳钢的额定寿命(L10寿命)分别是GCr15钢和SKF3钢的2.14和1.81倍. 超高碳钢的原奥氏体平均晶粒尺寸为6.91 μm, 仅约为GCr15和SKF3钢的一半. 同时, 淬回火态超高碳钢的硬度为64.5 HRC, 高于GCr15和SKF3钢.

关键词 超高碳钢滚动接触疲劳GCr15钢SKF3钢    
Abstract

With the development of modern industrial equipment and the requirement in energy conservation and emission reduction, the traditional high carbon and high chromium steel which is widely used as bearing material cannot meet these demands. Therefore, it is of paramount importance to exploit novel materials used as bearings with long life. In recent years, some new techniques have been used to improve the bearing life, such as physical vapor deposition (PVD), chemical vapor deposition (CVD) and plasma immersion implantation and so on. All these techniques are attempting to increase the surface hardness of the bearing. Though the bearing life has been extended to some extent, the application range of these techniques is limited by the price factor and the dimensions of components. Ultrahigh-carbon steels (UHCSs) have been studied for many years, and they possess outstanding mechanical properties and wear resistance. Therefore, it is interesting to explore the probability whether UHCSs can be used in the bearing application. It is well known that if bearings are well assembled, lubricated and loaded, rolling contact fatigue (RCF) is the main failure form. Accordingly, the evaluation of the resistance to RCF is of paramount importance for bearing materials. The RCF properties of UHCSs have never been studied in the past decades. Therefore, in this work, the RCF behavior of a UHCS with 1.29%C (mass fraction) was investigated in well lubricated conditions, using a flat washer-type RCF tester. In order to shorten the testing time, the maximum Hertzian stress was set as 4400 MPa. For comparison, the RCF lives of conventional GCr15 and SKF3 bearing steels were also tested under the same conditions. The results showed that the rated life L10 of the UHCS was 2.14 and 1.81 times longer than those of the GCr15 and SKF3 steels, respectively. Since more spherical residual carbide particles could be used to retard the grain growth during austenitization for the UHCS, the prior austenite grain size of the UHCS was only 6.91 μm. However, the prior austenite grain sizes of the GCr15 and SKF3 steels were 13.52 and 11.41 μm, respectively. Therefore, the average size of martensite plate of the UHCS was approximately half of those of the GCr15 and SKF3 steels. Finer grains were expected to retard the crack initiation and propagation, and then the RCF life would be prolonged. On the other hand, the carbon content and the volume fractions of precipitates in the martensite plates of the quenched and tempered UHCS were both higher than those of the GCr15 and SKF3 steels. These factors made the UHCS harder than GCr15 and SKF3 steels, which was beneficial for the improvement of RCF life.

Key wordsultrahigh carbon steel    rolling contact fatigue    GCr15 steel    SKF3 steel
    
ZTFLH:  TG142  
基金资助:* 国家自然科学基金资助项目51271137
作者简介: null

刘宏基, 男, 1986年生, 博士生

Steel C Si Mn Cr Al Mo Fe
UHCS 1.29 0.49 0.35 1.57 1.0 - Bal.
GCr15 1.00 0.28 0.19 1.61 - 0.078 Bal.
SKF3 1.01 0.23 0.31 1.53 - - Bal.
表1  超高碳钢(UHCS), GCr15和SKF3钢的化学成分
图1  滚动接触疲劳试验机及试样原理图
图2  UHCS, GCr15和SKF3钢的淬回火态组织的SEM像和TEM像
Steel Carbide Mass fraction of C Volume fraction of
Volume fraction / % Average diameter / μm in martensite / % retained austenite / %
UHCS 4.47 0.46 0.18 7.5
GCr15 2.76 0.36 0.13 5.7
SKF3 2.74 0.28 0.11 6.3
表2  淬回火态UHCS, GCr15和SKF3钢中的球形残余碳化物体积分数、平均颗粒半径及残余奥氏体含量
图3  淬回火态UHCS, GCr15和SKF3钢原奥氏体晶界的OM像
图4  UHCS, GCr15和SKF3钢的滚动接触疲劳寿命的Weibull分布图
Steel L10 / 106 cyc L50 / 106 cyc η / 106 cyc β
UHCS 6.76 12.66 14.31 3.00
GCr15 3.16 8.28 9.99 1.96
SKF3 3.73 8.63 10.16 2.24
表3  UHCS, GCr15和SKF3钢的滚动接触疲劳寿命结果
图5  不同周次下UHCS, GCr15和SKF3钢的轨道表面形貌
图6  粗晶和细晶中局部应变累积的位错理论示意图
图7  裂纹面穿过晶界时发生转向原理示意图
[1] Sherby O D, Cady J E M, Walser B, Young C M. US Pat, 3951697, 1976
[2] Wadsworth J, Sherby O D. Prog Mater Sci, 1980; 25: 35
[3] Lesuer D R, Syn C K, Sherby O D. SAE Tech Paper, 960314, 1996, doi:10.4271/960314
[4] Wadsworth J, Sherby O D. J Mech Work Technol, 1978; 2: 53
[5] Kayali E S, Sunada H, Oyama T, Wadsworth J, Sherby O D. J Mater Sci, 1979; 14: 2688
[6] Sunada H, Wadsworth J, Lin J, Sherby O D. Mater Sci Eng, 1979; 38: 35
[7] Chen X, Liu Y, Zhu J, Ge L. Tribol Lett, 2010; 38: 79
[8] Zhu J W, Yan X, Liu Y N. Mater Sci Eng, 2004; A385: 440
[9] Zhang Z L, Liu Y N, Yu G, Zhu J W, He T. Acta Metall Sin, 2009; 45: 280
[9] (张占领, 柳永宁, 于 光, 朱洁武, 何 涛. 金属学报, 2009; 45: 280)
[10] Hengerer F. Ball Bearing J, 1987; 231: 2
[11] Bhadeshia H K D H. Prog Mater Sci, 2012; 57: 268
[12] Liu H, Tang B, Wang L, Wang X, Jiang B. Surf Coat Technol, 2007; 201: 5273
[13] Liu H X, Wang L P, Wang X F, Huang L, Tang B Y. Acta Metall Sin, 2006; 42: 1197
[13] (刘洪喜, 王浪平, 王小峰, 黄 磊, 汤宝寅. 金属学报, 2006; 42: 1197)
[14] Liu H X, Jiang Y H, Zhou R, Zhou R F, Jin Q L, Tang B Y. Acta Metall Sin, 2008; 44: 325
[14] (刘洪喜, 蒋业华, 周 荣, 周荣峰, 金青林, 汤宝寅. 金属学报, 2008; 44: 325)
[15] Kuhn M, Gold P W, Loos J. Surf Coat Technol, 2004; 177-178: 469
[16] Nakashima H. NTN Tech Rev, 2008; 76: 10
[17] O'Brien M J,Presser N,Robinson E Y. Eng Fail Anal, 2003; 10: 453
[18] Szost B A, Vegter R H, Rivera-Díaz-del-Castillo P E J. Mater Des, 2013; 43: 499
[19] Lian F L, Liu H J, Sun J J, Sun X J, Guo S W, Liu Y N. J Mater Res, 2013; 28: 757
[20] Rivero I V, Ruud C O. Mater Charact, 2004; 53: 381
[21] Yoon D J, Lee M H, Jin J K, Kang S H, Nam T H. Met Mater, 2000; 6: 429
[22] Kim K H, Lee J S. Mater Sci Technol, 2012; 28: 50
[23] Zaretsky E V. NASA Tech Memorandum, 88881, 1986,
[24] Ringsberg J W. Int J Fatigue, 2001; 23: 575
[25] Kumar S, Curtin W A. Mater Today, 2007; 10: 34
[26] Zhai T, Wilkinson A J, Martin J W. Acta Mater, 2000; 48: 4917
[1] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[2] 张占领 柳永宁 于光 朱杰武 何涛. 超高碳钢中枣核状马氏体形态及亚结构[J]. 金属学报, 2009, 45(3): 280-284.
[3] 窦鹏; 李友国; 梁开明 . 中碳贝氏体支承辊钢低应力牵引滚动接触下的疲劳短裂纹行为[J]. 金属学报, 2005, 41(2): 140-144 .