Please wait a minute...
金属学报  2021, Vol. 57 Issue (7): 948-958    DOI: 10.11900/0412.1961.2020.00397
  研究论文 本期目录 | 过刊浏览 |
MnIn添加对SmCo7结构稳定性及磁矩影响的第一性原理计算
毛斐, 吕皓, 唐法威, 郭凯, 刘东, 宋晓艳()
北京工业大学 材料与制造学部 新型功能材料教育部重点实验室 北京 100124
First-Principle Calculation on the Effect of Mn and In on the Structural Stability and Magnetic Moment of SmCo7 Alloys
MAO Fei, LU Hao, TANG Fawei, GUO Kai, LIU Dong, SONG Xiaoyan()
Key Laboratory of Advanced Functional Materials, Ministry of Education, Facaulty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
引用本文:

毛斐, 吕皓, 唐法威, 郭凯, 刘东, 宋晓艳. MnIn添加对SmCo7结构稳定性及磁矩影响的第一性原理计算[J]. 金属学报, 2021, 57(7): 948-958.
Fei MAO, Hao LU, Fawei TANG, Kai GUO, Dong LIU, Xiaoyan SONG. First-Principle Calculation on the Effect of Mn and In on the Structural Stability and Magnetic Moment of SmCo7 Alloys[J]. Acta Metall Sin, 2021, 57(7): 948-958.

全文: PDF(7023 KB)   HTML
摘要: 

基于构建适用于第一性原理计算、原子比例准确为Sm∶Co = 1∶7的晶体结构模型,依据实验研究中得到的物相共存结果,对Mn和In掺杂的Sm-Co体系模型进行了系列计算分析。利用热力学计算方法,定量化研究了Mn和In在Sm-Co体系中优先占位特点及掺杂元素占位概率随温度的变化规律。通过Sm-Co合金掺杂体系的能量和电子结构计算,研究了Mn和In单掺杂SmCo7体系的结构稳定性。基于计算结果揭示了Mn和In对掺杂合金体系中原子间相互作用的影响,阐明了提升体系结构稳定性的微观机制,并提出了Mn添加可增加SmCo7合金的总磁矩,揭示了掺杂元素对SmCo7合金饱和磁化强度的影响规律。

关键词 Sm-Co基永磁合金第一性原理计算元素掺杂结构稳定性磁矩    
Abstract

Among the rare-earth permanent magnetic materials, Sm-Co-based alloys exhibit superior magnetic properties at high temperatures. However, their high-temperature applications are limited by their relatively low saturation magnetization and structural stability. The stability and magnetic properties of these alloys can be enhanced by adding proper alloying elements. In the search for new permanent high-performance magnets, researchers have systematically investigated the structures and magnetic properties of variously doped Sm-Co phases. The present research investigates the structural stability and magnetic properties of Sm-Co based alloys using a crystal structure model of SmCo7 with an accurate atomic ratio (Sm∶Co = 1∶7). To explain the coexisting multiphase phenomenon observed in experiments, Mn- and In-doped Sm-Co alloys were modeled by first-principles calculations. Systematic calculations were conducted on these models, and were combined with thermodynamics calculations to determine the preferred occupation sites of the doping elements and their change rule with temperature. Based on the calculated energy and electronic structures, the structural stabilities of the alloys were studied. The Mn and In dopants influenced the interactions among the Co atoms in the studied alloys. A microscopic mechanism of stability improvement in the SmCo7-based alloys was then proposed. The magnetic-moment calculation showed that the Mn additive enhanced the total magnetic moment of the SmCo7 alloys. This finding explains the effects of doping elements on the saturation magnetization of the SmCo7 alloys.

Key wordsSm-Co-based permanent magnetic alloy    first-principle calculation    element doping    structural stability    magnetic moment
收稿日期: 2020-09-30     
ZTFLH:  TG131  
基金资助:国家重点研发计划项目(2018YFB0703902、2016YFB0700501、2016YFB0700503)
作者简介: 毛 斐,女,1986年生,博士
图1  Sm2Co17 R相转变为SmCo7的晶体结构示意图
图2  SmCo7超晶胞结构及与文献[17,23,24]报道的SmCo7近似结构模型示意图
图3  4种SmCo7晶体结构模型对应的XRD模拟结果与实验结果[24]的比较
ModelLattice parameter / nmc / a
abc
SmCo50.49780.49780.39510.793
Experiment[29]0.49870.49870.39810.798
SmCo70.48630.48630.40290.828
Experiment[15]0.49360.49360.40070.812
表1  SmCo5和SmCo7超胞几何优化前后的晶格参数与实验值[15,29]对比
图4  掺杂元素Mn在SmCo7体系中3g、2c和2e晶位的形成能计算结果
图5  SmCo6.86Mn0.14体系中Mn在不同位点的占位概率随温度的变化
图6  Mn掺杂前后各体系的总态密度(DOS)及各原子的偏态密度(PDOS)(a) SmCo7 (b) SmCo6.86Mn0.14 (2c)(c) SmCo6.86Mn0.14 (3g) (d) SmCo6.86Mn0.14 (2e)
图7  Sm12Co60超晶胞结构及SmCo5、SmCo7和Sm2Co17模型在(001)平面投影示意图(a) Sm12Co60 supercell supercell structure(b) Sm12Co60 supercell supercell (Supercell structure model projected on the (001) plane)(c) SmCo5 unit cell (d) SmCo5 supercell(e) SmCo7 supercell (f) Sm2Co17 supercell
NumberModela / nmc / nmc / aV / nm3
A1SmCo5 (9 supercell)0.49680.39430.7900.759
A2Sm9Co44In (2c)0.49000.39620.8080.772
A3Sm9Co44In (3g)0.49280.39580.8030.773
B1SmCo70.48630.40290.8280.741
B2Sm7Co48In (2c)0.42240.40540.9590.754
B3Sm7Co48In (3g)0.42260.40390.9560.754
B4Sm7Co48In (2e)0.42330.40380.9540.752
C1Sm2Co170.48210.40460.8400.731
C2Sm6Co50In (6c)0.41950.40630.9680.743
C3Sm6Co50In (9d)0.41980.40620.9670.745
C4Sm6Co50In (18h)0.41990.40620.9670.745
C5Sm6Co50In (18j)0.41960.40750.9710.745
表2  计算的In掺杂SmCo5、SmCo7和Sm2Co17前后的晶格参数和晶胞体积
图8  In掺杂的SmCo5、SmCo7和Sm2Co17体系中In原子占据不同晶位的形成能计算结果
图9  掺杂元素In在不同体系中的占位概率随温度的变化(a) SmCo5 (b) SmCo7 (c) Sm2Co17
图10  掺杂Mn和In前后的SmCo5、SmCo7 和Sm2Co17超胞总磁矩(a) SmCo5 and SmCo7 supercells with or without Mn doping(b) SmCo5, SmCo7, and Sm2Co17 supercells with or without In doping at different sites
1 Gutfleisch O, Willard M A, Brück E, et al. Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient [J]. Adv. Mater., 2011, 23: 821
2 Liu J F, Chui T, Dimitrov D, et al. Abnormal temperature dependence of intrinsic coercivity in Sm(Co, Fe, Cu, Zr)z powder materials [J]. Appl. Phys. Lett., 1998, 73: 3007
3 Seyring M, Song X Y, Zhang Z X, et al. Concurrent ordering and phase transformation in SmCo7 nanograins [J]. Nanoscale, 2015, 7: 12126
4 Buschow K H J. New developments in hard magnetic materials [J]. Rep. Progr. Phys., 1991, 54: 1123
5 Zhang Z X, Song X Y, Li D P, et al. Phase stability and phase transformation of nanocrystalline SmCo7 alloy and their effects on the magnetic performance [J]. Rare. Met. Mater. Eng., 2013, 42: 565
5 张哲旭, 宋晓艳, 李定朋等. 纳米晶SmCo7合金的相稳定性、相变行为及其对磁性能的影响 [J]. 稀有金属材料与工程, 2013, 42: 565
6 Hirosawa S, Nishino M, Miyashita S. Perspectives for high-performance permanent magnets: Applications, coercivity, and new materials [J]. Adv. Nat. Sci: Nanosci. Nanotechnol., 2017, 8: 013002
7 Sun J B, Bu S J, Ding H W, et al. The effects of CNTs and/or Si additions on the structure and magnetic properties of SmCo7-based alloys [J]. J. Alloys Compd., 2013, 563: 91
8 Al-Omari A I, Yeshurun Y, Zhou J, et al. Magnetic and structural properties of SmCo7-xCuxalloys [J]. J. Appl. Phys., 2000, 87: 6710
9 Zhou J, Al-Omari A I, Liu J P, et al. Structure and magnetic properties of SmCo7-xTixwith TbCu7-type structure [J]. J. Appl. Phys., 2000, 87: 5299
10 Hsieh C C, Huang S T, Guo J S, et al. Effect of a carbon additive on the TbCu7-type melt-spun Sm(Co, M)7 (M = Ti, Zr, Hf, V and Ge) ribbons [J]. J. Korean Phys. Soc., 2013, 63: 401
11 Zaigham H, Khalid F A. Exchange coupling and magnetic behavior of SmCo5-xSnx alloys [J]. J. Mater. Sci. Technol., 2011, 27: 218
12 Hsieh C C, Chang H W, Guo Z H, et al. Crystal structure and magnetic properties of melt spun SmCo7-xMx (M = Ta, Cr, and Mo; x = 0-0.6) ribbons [J]. J. Appl. Phys., 2010, 107: 09A738
13 Hsieh C C, Shih C W, Liu Z, et al. Magnetic properties and crystal structure of melt spun Sm(Co, M)7 (M = Al and Si) ribbons [J]. J. Appl. Phys., 2012, 111: 07E306
14 Hua G, Song X Y, Liu D, et al. Effects of Hf on phase structure and magnetic performance of nanocrystalline SmCo7-type alloy [J]. J. Mater. Sci., 2016, 51: 3390
15 Qian J W, Guo Y Q. Effect on the structure stability of minor Al or Zn doping into SmCo7 [A]. DEStech Transactions on Materials Science and Engineering [C]. Sanya: DEStech Publications, 2017: 83
16 Luo J, Liang J K, Guo Y Q, et al. Effects of the doping element on crystal structure and magnetic properties of Sm(Co, M)7, compounds (M = Si, Cu, Ti, Zr, and Hf) [J]. Intermetallics, 2005, 13: 710
17 Chen Y Y, Hsieh C C, Lo S C, et al. The effect of doping element Zr on anisotropy and microstructure of SmCo7-xZrx [J]. J. Appl. Phys., 2011, 109: 07A748
18 Sun J B, Bu S J, Yang W, et al. Structure and magnetic properties of SmCo7-xGax (0 ⩽ x ⩽ 1.2) alloys [J]. J. Alloys Compd., 2014, 583: 554
19 Li Y Y, Jiang S, Chen Y. Atomistic simulation for disordered TbCu7-type compounds SmCo7 and Sm(Co,T)7 (T = Ti, Ga, Si, Cu, Hf, Zr) [J]. Solid State Sci., 2010, 12: 33
20 Liu D, Guo K, Tang F W, et al. Selecting doping elements by data mining for advanced magnets [J]. Chem. Mater., 2019, 31: 10117
21 Mao F. First-principles calculations on structure and magnetism properties of Sm-Co based alloys [D]. Beijing: Beijing University of Technology, 2020
21 毛 斐. Sm-Co合金体系相结构与磁学性能的第一性原理计算研究 [D]. 北京: 北京工业大学, 2020
22 Zhang C W. Study on the electronic structure and magnetic properties of a new Sm-Co-based ternary permanent magnet alloy [D]. Jinan: Shandong University, 2006
22 张昌文. 新型Sm-Co基三元永磁合金的电子结构及磁性研究 [D]. 济南: 山东大学, 2006
23 Zhang Z X. Preparation and characterizations on structures and properties of nanocrystalline metastable samarium-cobalt alloys [D]. Beijing: Beijing University of Technology, 2012
23 张哲旭. 纳米晶Sm-Co亚稳相合金的制备及结构性能研究 [D]. 北京: 北京工业大学, 2012
24 Hua G. Effects of metallic element doping on phase stability and magnetic performance of metastable SmCo7-type alloys [D]. Beijing: Beijing University of Technology, 2016
24 华 刚. 添加金属元素对SmCo7亚稳相合金稳定性和磁性能的影响 [D]. 北京: 北京工业大学, 2016
25 Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B: 11169
26 Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput. Mater. Sci., 1996, 6: 15
27 Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev., 1992, 46B: 6671
28 Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
29 Andreev A V, Zadvorkin S M. Thermal expansion and spontaneous magnetostriction of RCo5 intermetallic compounds [J]. Physica, 1991, 172B: 517
30 Kohan A F, Ceder G, Morga D, et al. First-principles study of native point defects in ZnO [J]. Phys. Rev., 2000, 61B: 15019
31 Condon E U. The principles of statistical mechanics [J]. J. Appl. Phys., 1939, 10: 691
32 Dixit V, Nandadasa C N, Kim S G, et al. Site occupancy and magnetic properties of Al-substituted M-type strontium hexaferrite [J]. J. Appl. Phys., 2015, 117: 243904
33 van de Walle A, Ceder G. The effect of lattice vibrations on substitutional alloy thermodynamics [J]. Rev. Mod. Phys., 2002, 74: 11
34 Xu Z Y. Thermodynamics of Materials [M]. Beijing: Higher Education Press, 2009: 52
34 徐祖耀. 材料热力学 [M]. 北京: 高等教育出版社, 2009: 52
35 Hua G, Song X Y, Tang F W, et al. Modeling and experimental studies of Hf-doped nanocrystalline SmCo7 alloys [J]. CrystEngComm., 2016, 18: 8080
[1] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[2] 王明康, 苑峻豪, 刘宇峰, 王清, 董闯, 张中伟. TiZr-Nb二元合金β结构稳定性和力学性能的影响[J]. 金属学报, 2021, 57(1): 95-102.
[3] 张海军, 邱实, 孙志梅, 胡青苗, 杨锐. 无序β-Ti1-xNbx合金自由能及弹性性质的第一性原理计算:特殊准无序结构和相干势近似的比较[J]. 金属学报, 2020, 56(9): 1304-1312.
[4] 白静, 石少锋, 王锦龙, 王帅, 赵骧. Ni-Mn-Ga-Ti铁磁形状记忆合金的相稳定性和磁性能的第一性原理计算[J]. 金属学报, 2019, 55(3): 369-375.
[5] 董彩虹, 刘永利, 祁阳. 厚度对Bi薄膜表面特性和电学性质的影响[J]. 金属学报, 2018, 54(6): 935-942.
[6] 周刚, 叶荔华, 王皞, 徐东生, 孟长功, 杨锐. 六角结构金属中基面/柱面取向转变的孪晶路径及合金化效应的第一性原理研究[J]. 金属学报, 2018, 54(4): 603-612.
[7] 白静,李泽,万震,赵骧. Ni-Mn-Ga-Cu铁磁形状记忆合金的晶体结构、相稳定性和磁性能的第一性原理研究[J]. 金属学报, 2017, 53(1): 83-89.
[8] 张旭东,王绍青. Al3Sc和Al3Zr金属间化合物热力学性质的第一性原理计算[J]. 金属学报, 2013, 29(4): 501-505.
[9] 毛萍莉,于波,刘正,王峰,鞠阳. Mg-Zn-Ca合金中AB2型金属间化合物电子结构和弹性性质的第一性原理计算[J]. 金属学报, 2013, 49(10): 1227-1233.
[10] 周惦武 刘金水 徐少华 彭平. Al2Sr和Mg2Sr相结构稳定性与弹性性能的第一原理计算[J]. 金属学报, 2011, 47(10): 1315-1320.
[11] 周惦武 徐少华 张福全 彭平 刘金水. ZA62镁合金中AB2型金属间化合物的结构稳定性与弹性性能的第一原理计算[J]. 金属学报, 2010, 46(1): 97-103.
[12] 姚强; 邢辉; 孟丽君; 孙坚 . Ti-Mo合金β结构稳定性和弹性性质的第一性原理研究[J]. 金属学报, 2008, 44(1): 19-22 .
[13] 王文全; 王建立; 唐宁; 包富泉; 吴光恒; 杨伏明; 金汉民 . Sm2C017-xTix化合物的结构和磁性[J]. 金属学报, 2001, 37(4): 415-418 .
[14] 杨王玥;盛丽珍;孙祖庆;黄原定;毛卫民;张百生;叶春堂. 代位合金元素原子在Fe_3Al金属间化合物亚点阵占位的中子衍射研究[J]. 金属学报, 1996, 32(8): 799-804.
[15] 罗广圣;贺伦燕;曾贻伟;杨伏明. (Sm_(1-x)Y_x)_2Fe_(17)N_y的Mossbauer谱研究[J]. 金属学报, 1996, 32(3): 328-332.