Please wait a minute...
金属学报  2021, Vol. 57 Issue (7): 937-947    DOI: 10.11900/0412.1961.2020.00393
  研究论文 本期目录 | 过刊浏览 |
颗粒尺寸对金刚石/Al封装基板热物性的影响
周洪宇1, 冉珉瑞1, 李亚强2, 张卫冬1, 刘俊友3, 郑文跃1()
1.北京科技大学 国家材料服役安全科学中心 北京 100083
2.北京科技大学 新材料技术研究院 北京 100083
3.北京科技大学 材料科学与工程学院 北京 100083
Effect of Diamond Particle Size on the Thermal Properties of Diamond/Al Composites for Packaging Substrate
ZHOU Hongyu1, RAN Minrui1, LI Yaqiang2, ZHANG Weidong1, LIU Junyou3, ZHENG Wenyue1()
1.National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
2.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
3.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

周洪宇, 冉珉瑞, 李亚强, 张卫冬, 刘俊友, 郑文跃. 颗粒尺寸对金刚石/Al封装基板热物性的影响[J]. 金属学报, 2021, 57(7): 937-947.
Hongyu ZHOU, Minrui RAN, Yaqiang LI, Weidong ZHANG, Junyou LIU, Wenyue ZHENG. Effect of Diamond Particle Size on the Thermal Properties of Diamond/Al Composites for Packaging Substrate[J]. Acta Metall Sin, 2021, 57(7): 937-947.

全文: PDF(12972 KB)   HTML
摘要: 

利用新型液固分离技术制备40% (体积分数)-金刚石/Al复合材料封装基板,通过SEM、EPMA和XRD观察和分析复合材料的断口形貌及界面结构,分析金刚石颗粒尺寸(90、106、124和210 µm)对金刚石/Al复合材料热物性的影响。结果表明,复合材料致密度随金刚石颗粒尺寸增加呈现先增加后急剧降低的规律,在颗粒尺寸为106 µm时,致密度达到极大值。复合材料界面处未发现有恶化性能的Al4C3生成。复合材料的热膨胀系数随金刚石颗粒尺寸增加略有增大,保持相对稳定,Kerner模型可以准确模拟复合材料热膨胀系数。热导率受金刚石颗粒尺寸和界面行为共同作用,与致密度呈现相同变化规律。金刚石颗粒尺寸为106 µm的金刚石/Al复合材料具有最佳的综合性能,致密度达到97.12%,热膨胀系数为12.4 × 10-6 K-1,热导率为153.1 W/(m·K),达到Maxwell-Eucken模型预测值的69.31%,气密性指标满足电子封装材料军用装配标准。

关键词 金刚石/Al复合材料液固分离技术金刚石颗粒尺寸热导率电子封装    
Abstract

Rapid development of high-power electronic equipment for 5G and other advanced communication devices leads to a highly compact component size with increased heat flux density in integrated circuits, which requires electronic packaging materials to meet excellent heat dissipation performance. In this work, a novel liquid-solid separation technology was used to prepare a 40% (volume fraction) diamond/Al composite for electronic packaging substrates. By SEM, EPMA, and XRD techniques to investigate the fracture morphology and interface structure of the composite, the influence of diamond particle sizes (90, 106, 124, and 210 μm) on the thermophysical properties of diamond/Al composite was studied. The results showed that with the increase of a diamond particle size, the density of a composite material increased first and then sharply decreased and attained the optimal value when the diamond particle size was 106 μm. No harmful intermetallic Al4C3 was generated at the interface of the composite material. Coefficient of thermal expansion (αc) of the composite material increases slightly with increase in diamond particle sizes and remains relatively stable. The Kerner model can accurately simulate the αc of the diamond/Al composite. Thermal conductivity (λ) is also affected by diamond particle sizes and interface behaviors, and the trend of change in λ with the size of the diamond particles follows a similar trend to that between the density of composites and the particle size. The diamond/Al composite with diamond particle size of 106 μm has the best overall performance, relative density and αc attained 97.12% and 12.4 × 10-6 K-1, respectively. λ is 153.1 W/(m·K), meeting 69.31% of the Maxwell-Eucken model prediction value. The airtightness value meets the military standard for this type of an electronic packaging material.

Key wordsdiamond/Al composite    liquid-solid separation technology    diamond particle size    thermal conductivity    electronic packaging
收稿日期: 2020-09-30     
ZTFLH:  TG132.1  
基金资助:中央高校基本科研业务费项目(FRF-TP-19-012A1);北京市科技计划项目(Z121100001312012)
作者简介: 周洪宇,男,1988年生,博士
图1  液固分离(LSS)工艺流程示意图(a) schematic of liquid and solid phase separation (σ—pressure, D—diamond particle, a-e—directions of pressure transmission of diamond particle, f—flow direction of liquid Al)(b) cold-pressed blank(c) LSS mold system(d) fabricate of diamond/Al composite and separated liquid phase
图2  不同颗粒尺寸金刚石的SEM像
图3  LSS技术制备的金刚石/Al复合材料及分离出的液相的显微组织SEM像
图4  不同尺寸金刚石颗粒所制备的金刚石/Al复合材料断口的SEM像
图5  金刚石/Al复合材料界面处的SEM像及EPMA元素分布
图6  金刚石平均颗粒尺寸为106 μm时制备的金刚石/Al复合材料的XRD谱

Particle diameter

µm

Density

g·cm-3

Relative density

%

αc

10-6 K-1

λ

W·m-1·K-1

902.90596.1912.1147.8
1062.93397.1212.4153.1
1242.87795.2612.5132.6
2102.77191.7513.296.5
表1  不同尺寸金刚石颗粒所制备的金刚石/Al复合材料的致密度和热物理性能
MaterialαcBulkShear
10-6 K-1modulusmodulus
GPaGPa
Al23.57626
Diamond1.2442478
表2  原材料热膨胀系数及力学参数[35]
图7  金刚石/Al复合材料热膨胀系数实际测量值与理论模型计算值的对比
MaterialPhonon velocityCDη1-2hccp
Cl / (m·s-1)Ct / (m·s-1)m·s-1W·m-2·K-1J·g-1·K-1
Al6240304038650.0194.43 × 1070.895
Diamond2000012300148170.500
表3  原材料物理参数[38]
图8  金刚石/Al复合材料热导率实际测量值与理论模型计算值的对比
1 Suh D, Moon C M, Kim D, et al. Ultrahigh thermal conductivity of interface materials by silver-functionalized carbon nanotube phonon conduits [J]. Adv. Mater., 2016, 28: 7220
2 Li T, Li J Q, Wang W G, et al. A discussion on the main factors affecting thermal conductivity of carbon/metal matrix composites [J]. Mater. Rev., 2018, 32: 2640
2 李 通, 李金权, 王文广等. 影响碳/金属复合材料导热性能的主要因素探讨 [J]. 材料导报, 2018, 32: 2640
3 Zhang D, Yuan M Y, Tan Z Q, et al. Progress in interface modification and nanoscale study of diamond/Cu composites [J]. Acta Metall. Sin., 2018, 54: 1158
3 张 荻, 苑孟颖, 谭占秋等. 金刚石/Cu复合界面导热改性及其纳米化研究进展 [J]. 金属学报, 2018, 54: 1158
4 Janicki M, Napieralski A. Modelling electronic circuit radiation cooling using analytical thermal model [J]. Microelectron. J., 2000, 31: 781
5 Ma R L, Peng C Q, Wang R C, et al. Research progress of diamond/aluminum composites for electronic packaging [J]. Chin. J. Nonferrous Met., 2014, 24: 689
5 马如龙, 彭超群, 王日初等. 电子封装用diamond/Al复合材料研究进展 [J]. 中国有色金属学报, 2014, 24: 689
6 Liu X Y, Wang W G, Wang D, et al. Effect of nanometer TiC coated diamond on the strength and thermal conductivity of diamond/Al composites [J]. Mater. Chem. Phys., 2016, 182: 256
7 Zhang L, Wei Q P, An J J, et al. Construction of 3D interconnected diamond networks in Al-matrix composite for high-efficiency thermal management [J]. Chem. Eng. J., 2020, 380: 122551
8 Chu K, Jia C C, Liang X B, et al. Effect of particle size on the microstructure and thermal conductivity of Al/diamond composites prepared by spark plasma sintering [J]. Rare Met., 2009, 28: 646
9 Tan Z Q, Chen Z Z, Fan G L, et al. Effect of particle size on the thermal and mechanical properties of aluminum composites reinforced with SiC and diamond [J]. Mater. Des., 2016, 90: 845
10 Kwon H, Leparoux M, Heintz J M, et al. Fabrication of single crystalline diamond reinforced aluminum matrix composite by powder metallurgy route [J]. Met. Mater. Int., 2011, 17: 755
11 Zhang W X, Xu S S, Wang Y Z, et al. Diamond/Ti3AlC2 composite prepared by spark plasma sintering [J]. Superhard Mater. Eng., 2017, 29(1): 11
11 张旺玺, 徐世帅, 王艳芝等. 放电等离子烧结制备金刚石/钛铝碳复合材料 [J]. 超硬材料工程, 2017, 29(1): 11
12 Mizuuchi K, Inoue K, Agari Y, et al. Bimodal and monomodal diamond particle effect on the thermal properties of diamond-particle-dispersed Al-matrix composite fabricated by SPS [J]. Microelectron. Reliab., 2014, 54: 2463
13 Sun Y H, Zhang C, He L K, et al. Enhanced bending strength and thermal conductivity in diamond/Al composites with B4C coating [J]. Sci. Rep., 2018, 8: 11104
14 Ji G, Tan Z Q, Lu Y G, et al. Heterogeneous interfacial chemical nature and bonds in a W-coated diamond/Al composite [J]. Mater. Charact., 2016, 112: 129
15 Che Z F, Li J W, Wang Q X, et al. The formation of atomic-level interfacial layer and its effect on thermal conductivity of W-coated diamond particles reinforced Al matrix composites [J]. Composites, 2018, 107A: 164
16 Yang W L, Sang J Q, Zhou L P, et al. Overcoming selective interfacial bonding and enhancing thermal conductivity of diamond/aluminum composite by an ion bombardment pretreatment [J]. Diam. Relat. Mater., 2018, 81: 127
17 Ma S D, Zhao N Q, Shi C S, et al. Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites [J]. Appl. Surf. Sci., 2017, 402: 372
18 Wang P P, Xiu Z Y, Jiang L T, et al. Enhanced thermal conductivity and flexural properties in squeeze casted diamond/aluminum composites by processing control [J]. Mater. Des., 2015, 88: 1347
19 Liang X B, Jia C C, Chu K, et al. Thermal conductivity and microstructure of Al/diamond composites with Ti-coated diamond particles consolidated by spark plasma sintering [J]. J. Compos. Mater., 2012, 46: 1127
20 Tan Z Q, Li Z Q, Fan G L, et al. Fabrication of diamond aluminium composites by vacuum hot: Pressing process optimization and thermal properties [J]. Composites, 2013, 47B: 173
21 Xin L, Tian X, Yang W S, et al. Enhanced stability of the diamond/Al composites by W coatings prepared by the magnetron sputtering method [J]. J. Alloys Compd., 2018, 763: 305
22 Li N, Wang L H, Dai J J, et al. Interfacial products and thermal conductivity of diamond/Al composites reinforced with ZrC-coated diamond particles [J]. Diam. Relat. Mater., 2019, 100: 107565
23 Zhou H Y, Liu X, Yin Z, et al. The fabrication of functional gradient hypereutectic Al-Si composites by liquid-solid separation technology [J]. J. Alloys Compd., 2018, 763: 49
24 Zhou H Y, Yin Y L, Shi Z L, et al. The fabrication of Al-diamond composites for heat dissipation by liquid-solid separation technology [J]. J. Mater. Sci.: Mater. Electron., 2017, 28: 721
25 Zhou H Y, Yin Y L, Wu C J, et al. Microstructures and properties of diamond/Al composites prepared by liquid-solid separation technology [J]. Chin. J. Nonferrous. Met., 2017, 27: 1855
25 周洪宇, 尹衍利, 吴春京等. 液固分离法制备金刚石/铝封装材料的组织与性能 [J]. 中国有色金属学报, 2017, 27: 1855
26 Yamamoto Y, Imai T, Tanabe K, et al. The measurement of thermal properties of diamond [J]. Diam. Relat. Mater., 1997, 6: 1057
27 Yang W L, Peng K, Zhou L P, et al. Finite element simulation and experimental investigation on thermal conductivity of diamond/aluminium composites with imperfect interface [J]. Comput. Mater. Sci., 2014, 83: 375
28 Ren S B, He X B, Qu X H, et al. Effect of Mg and Si in the aluminum on the thermo-mechanical properties of pressureless infiltrated SiCp/Al composites [J]. Compos. Sci. Technol., 2007, 67: 2103
29 Yin S, Cizek J, Chen C Y, et al. Metallurgical bonding between metal matrix and core-shelled reinforcements in cold sprayed composite coating [J]. Scr. Mater., 2020, 177: 49
30 Tan Z Q, Li Z Q, Xiong D B, et al. A predictive model for interfacial thermal conductance in surface metallized diamond aluminum matrix composites [J]. Mater. Des., 2014, 55: 257
31 Yan Y W, Geng L. Effects of particle size on the thermal expansion behavior of SiCp/Al composites [J]. J. Mater. Sci., 2007, 42: 6433
32 Geiger A L, Jackson M. Low-expansion MMC's boost avionics [J]. Adv. Mater. Process., 1989, 136: 23
33 Turner P S. Thermal-expansion stress in reinforced plastics [J]. J. Res. Nat. Bur. Stand., 1946, 37: 250
34 Kerner E H. The elastic and thermo-elastic properties of composite media [J]. Proc. Phys. Soc., 1956, 69B: 808
35 Edtmaier C, Segl J, Koos R, et al. Characterization of interfacial bonding strength at Al(Si)/diamond interfaces by neutron diffraction: Effect of diamond surface termination and processing conditions [J]. Diam. Relat. Mater., 2020, 106: 107842
36 Vetterli M, Tavangar R, Weber L, et al. Influence of the elastic properties of the phases on the coefficient of thermal expansion of a metal matrix composite [J]. Scr. Mater., 2011, 64: 153
37 Fan T X, Liu Y, Yang K M, et al. Recent progress on interfacial structure optimization and their influencing mechanism of carbon reinforced metal matrix composites [J]. Acta Metall. Sin., 2019, 55: 16
37 范同祥, 刘 悦, 杨昆明等. 碳/金属复合材料界面结构优化及界面作用机制的研究进展 [J]. 金属学报, 2019, 55: 16
38 Yang W S, Chen G Q, Wang P P, et al. Enhanced thermal conductivity in diamond/Aluminum composites with tungsten coatings on diamond particles prepared by magnetron sputtering method [J]. J. Alloys Compd., 2017, 726: 623
39 Monje I E, Louis E, Molina J M. On critical aspects of infiltrated Al/diamond composites for thermal management: Diamond quality versus processing conditions [J]. Composites, 2014, 67A: 70
40 Caccia M, Rodríguez A, Narciso J. Diamond surface modification to enhance interfacial thermal conductivity in Al/diamond composites [J]. JOM, 2014, 66: 920
41 Maxwell J C. A Treatise on Electricity and Magnetism [M]. Oxford: Oxford University Press, 1937: 1
42 Tavangar R, Molina J M, Weber L. Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast [J]. Scr. Mater., 2007, 56: 357
[1] 李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.
[2] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[3] 周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
[4] 赵立东, 王思宁, 肖钰. 热电材料的载流子迁移率优化[J]. 金属学报, 2021, 57(9): 1171-1183.
[5] 崔洋, 李寿航, 应韬, 鲍华, 曾小勤. 基于第一性原理的金属导热性能研究[J]. 金属学报, 2021, 57(3): 375-384.
[6] 张荻, 苑孟颖, 谭占秋, 熊定邦, 李志强. 金刚石/Cu复合界面导热改性及其纳米化研究进展[J]. 金属学报, 2018, 54(11): 1586-1596.
[7] 刘晓云,王文广,王东,肖伯律,倪丁瑞,陈礼清,马宗义. 片层石墨尺寸对片层石墨/Al复合材料的强度和热导率的影响[J]. 金属学报, 2017, 53(7): 869-878.
[8] 项建英 陈树海 黄继华 赵兴科 张华. 等离子喷涂La2(Zr0.7Ce0.3)2O7热障涂层的抗热震性能[J]. 金属学报, 2012, 48(8): 965-970.
[9] 高宇飞 孟庆元. 一维纳米材料导热性能的分子动力学模拟[J]. 金属学报, 2010, 46(10): 1244-1249.
[10] 尹立孟 杨艳 刘亮岐 张新平. 电子封装微互连焊点力学行为的尺寸效应[J]. 金属学报, 2009, 45(4): 422-427.
[11] 曹炳阳; 张清光; 张兴; TAKAHASHI Koji; IKUTA Tatsuya; 乔文明; FUJII Motoo . 纳米Pt膜的晶粒尺寸及其对热导率的影响[J]. 金属学报, 2006, 42(11): 1207-1211 .
[12] 王晓峰; 赵九洲; 田冲 . 喷射沉积制备新型电子封装材料70%Si-Al的研究[J]. 金属学报, 2005, 41(12): 1277-1279 .
[13] 朱奇农; 王国忠 . 复合SnPb焊点的形态与可靠性预测[J]. 金属学报, 2000, 36(1): 93-98 .