|
|
W-Ni-Fe三元合金等离子球化过程的SPH仿真研究 |
侯玉柏1,2,3, 于月光2( ), 郭志猛1 |
1.北京科技大学 新材料技术研究院 北京 100083 2.矿冶科技集团有限公司 北京 100160 3.北矿新材科技有限公司 北京 102206 |
|
Simulation Study of Smoothed Particle Hydrodynamics (SPH) Method in Plasma Spheroidization of W-Ni-Fe Ternary Alloys |
HOU Yubai1,2,3, YU Yueguang2( ), GUO Zhimeng1 |
1.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 2.BGRIMM Technology Group, Beijing 100160, China 3.BGRIMM Advanced Materials Science & Technology Co. , Ltd. , Beijing 102206, China |
引用本文:
侯玉柏, 于月光, 郭志猛. W-Ni-Fe三元合金等离子球化过程的SPH仿真研究[J]. 金属学报, 2021, 57(2): 247-256.
Yubai HOU,
Yueguang YU,
Zhimeng GUO.
Simulation Study of Smoothed Particle Hydrodynamics (SPH) Method in Plasma Spheroidization of W-Ni-Fe Ternary Alloys[J]. Acta Metall Sin, 2021, 57(2): 247-256.
1 |
Shuai S S, Lin X, Xiao W Q, et al. Effect of transverse static magnetic field on microstructure of Al-12%Si alloys fabricated by powder-blow additive manufacturing [J]. Acta Metall. Sin., 2018, 54: 918
|
1 |
帅三三, 林 鑫, 肖武泉等. 横向静磁场对激光熔化增材制造Al-12%Si合金凝固组织的影响 [J]. 金属学报, 2018, 54: 918
|
2 |
Zhang Y J, Wang H B, Song X Y, et al. Preparation and performance of spherical Ni powder for SLM processing [J]. Acta Metall. Sin., 2018, 54: 1833
|
2 |
张亚娟, 王海滨, 宋晓艳等. SLM球形Ni粉的制备与打印工艺性能 [J]. 金属学报, 2018, 54: 1833
|
3 |
Bárdos L, Baránková H. Plasma processes at atmospheric and low pressures [J]. Vacuum, 2008, 83: 522
|
4 |
Kobayashi A, Sharafat S, Ghoniem N M. Formation of tungsten coatings by gas tunnel type plasma spraying [J]. Surf. Coat. Technol., 2006, 200: 4630
|
5 |
Kumar S, Na H, Selvarajan V, et al. Influence of metal powder shape on drag coefficient in a spray jet [J]. Curr. Appl. Phys., 2009, 9: 678
|
6 |
Zhang T, Yan W, Xie Z M, et al. Recent progress of oxide/carbide dispersion strengthened W-based materials [J]. Acta Metall. Sin., 2018, 54: 831
|
6 |
张 涛, 严 玮, 谢卓明等. 碳化物/氧化物弥散强化钨基材料研究进展 [J]. 金属学报, 2018, 54: 831
|
7 |
Kumar S, Selvarajan V. Plasma spheroidization of iron powders in a non-transferred DC thermal plasma jet [J]. Mater. Charact., 2008, 59: 781
|
8 |
Zhou H B, Li Y H, Lu G H. Modeling and simulation of hydrogen behavior in tungsten [J]. Acta Metall. Sin., 2018, 54: 301
|
8 |
周洪波, 李宇浩, 吕广宏. W中H行为的计算模拟研究 [J]. 金属学报, 2018, 54: 301
|
9 |
Nam J S, Park E, Seo J H. Numerical analysis of radio-frequency inductively coupled plasma spheroidization of titanium metal powder under single particle and dense loading conditions [J]. Met. Mater. Int., 2020, 26: 491
|
10 |
Bernardi D, Colombo V, Ghedini E, et al. 3-D numerical simulation of fully-coupled particle heating in ICPTs [J]. Eur. Phys. J., 2004, 28D: 423
|
11 |
Morris J P. Simulating surface tension with smoothed particle hydrodynamics [J]. Int. J. Numer. Meth. Fluids, 2000, 33: 333
|
12 |
Tong M M, Browne D J. An incompressible multi-phase smoothed particle hydrodynamics (SPH) method for modelling thermocapillary flow [J]. Int. J. Heat Mass Transf., 2014, 73: 284
|
13 |
Russell M A, Souto-Iglesias A, Zohdi T I. Numerical simulation of laser fusion additive manufacturing processes using the SPH method [J]. Comput. Methods Appl. Mech. Eng., 2018, 341: 163
|
14 |
Zhang M Y. Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method [J]. J. Comput. Phys., 2010, 229: 7238
|
15 |
Olsson E, Kreiss G. A conservative level set method for two phase flow [J]. J. Comput. Phys., 2005, 210: 225
|
16 |
Monaghan J J. Smoothed particle hydrodynamics [J]. Rep. Prog. Phys., 2005, 68: 1703
|
17 |
Liu M B, Liu G R. Smoothed particle hydrodynamics (SPH): An overview and recent developments [J]. Arch. Comput. Methods Eng., 2010, 17: 25
|
18 |
Huang C, Long T, Li S M, et al. A kernel gradient-free SPH method with iterative particle shifting technology for modeling low-Reynolds flows around airfoils [J]. Eng. Anal. Boundary Elem., 2019, 106: 571
|
19 |
Wang L, Xu F, Yang Y. SPH scheme for simulating the water entry of an elastomer [J]. Ocean Eng., 2019, 178: 233
|
20 |
Niu X F, Zhao J Y, Wang B J. Application of smooth particle hydrodynamics (SPH) method in gravity casting shrinkage cavity prediction [J]. Comput. Part. Mech., 2019, 6: 803
|
21 |
Liu G R, Liu M B. translated by Han X, Yang G, Qiang H F. Smoothed Particle Hydrodynamics: A Meshfree Particle Method [M]. Changsha: Hunan University Press, 2005: 39
|
21 |
Liu G R, Liu M B著, 韩 旭, 杨 刚, 强洪夫译. 光滑粒子流体动力学——一种无网格粒子法 [M]. 长沙: 湖南大学出版社, 2005: 39
|
22 |
Monaghan J J. Smoothed particle hydrodynamics [J]. Annu. Rev. Astron. Astrophys., 1992, 30: 543
|
23 |
Lind S J, Stansby P K, Rogers B D, et al. Numerical predictions of water-air wave slam using incompressible-compressible smoothed particle hydrodynamics [J]. Appl. Ocean Res., 2015, 49: 57
|
24 |
Lind S J, Stansby P K, Rogers B D. Incompressible-compressible flows with a transient discontinuous interface using smoothed particle hydrodynamics (SPH) [J]. J. Comput. Phys., 2016, 309: 129
|
25 |
Qiang H F, Liu H, Chen F Z, et al. Experimental Study on Atomization of Gel-Propellant and Numerical Simulation of SPH [M]. Beijing: Science Press, 2019: 115
|
25 |
强洪夫, 刘 虎, 陈福振等. 凝胶推进剂雾化的实验与SPH数值模拟研究 [M]. 北京: 科学出版社, 2019: 115
|
26 |
Qian J, Law C K. Regimes of coalescence and separation in droplet collision [J]. J. Fluid Mech., 1997, 331: 59
|
27 |
Qin S S, Yu Y, Zeng G Y, et al. Research on the preparation of metal powder for 3D printing [J]. Powder Metall. Ind., 2016, 26(5): 21
|
27 |
覃思思, 余 勇, 曾归余等. 3D打印用金属粉末的制备研究[J]. 粉末冶金工业, 2016, 26(5): 21
|
28 |
Liang Y R, Wu Y J. Production technology of titanium and its alloy spherical powders used in 3D printing [J]. World Nonferrous Met., 2016, (6): 150
|
28 |
梁永仁, 吴引江. 3D打印用钛及钛合金球形粉末制备技术 [J]. 世界有色金属, 2016, (6): 150
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|