Please wait a minute...
金属学报  2020, Vol. 56 Issue (5): 704-714    DOI: 10.11900/0412.1961.2019.00288
  本期目录 | 过刊浏览 |
基于Ce变质处理的TWIP钢凝固组织细化
李根, 兰鹏(), 张家泉
北京科技大学冶金与生态工程学院 北京 100083
Solidification Structure Refinement in TWIP Steel by Ce Inoculation
LI Gen, LAN Peng(), ZHANG Jiaquan
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
Gen LI, Peng LAN, Jiaquan ZHANG. Solidification Structure Refinement in TWIP Steel by Ce Inoculation[J]. Acta Metall Sin, 2020, 56(5): 704-714.

全文: PDF(2643 KB)   HTML
摘要: 

通过真空感应熔炼制备了成分为Fe-22Mn-0.65C的奥氏体TWIP钢,揭示了Ce含量及过热度对TWIP钢凝固组织细化的影响。基于FactSage 7.0热力学软件及错配度模型预测了Ce在TWIP钢中的变质产物及其非均质形核有效性,采用OM、SEM、EBSD、EPMA等手段对不同条件下凝固组织变质处理效果进行定量研究。结果表明,随Ce含量升高,其在TWIP钢中的反应产物由Ce2O3向Ce2O3+少量Ce2O2S转变,而2种粒子理论上均可作为有效形核核心;Ce变质处理后,TWIP钢试样铸态组织等轴晶率从25%升至72%,等轴晶平均尺寸由480 μm减小到130 μm,Mn元素偏析比由1.61降至1.41;降低变质处理温度时,含Ce粒子团聚倾向减小,TWIP钢凝固组织细化的效果更显著。本工作中建议的变质处理参数为过热度20 ℃时加入(0.02%~0.04%)Ce。

关键词 CeTWIP钢变质处理凝固组织细化显微偏析    
Abstract

Twinning-induced plasticity (TWIP) steel represents a novel grade of advanced high strength and ductility with significant potential for automotive industry. However, high alloying in TWIP steel leads to the inhomogeneous solute distribution and anisotropic local deformation. It is well known that the refinement of solidification structure is an effective solution to the above defects. Much attention has been paid to heterogeneous nucleation by Ce particles, acting as nucleating sites in liquid steel. The present work focuses on how Ce content and casting parameters affect the refinement of solidification structure in Fe-22Mn-0.65C TWIP steel, aiming to provide an effective technology in high alloy steel production. The reaction products of Ce inoculation were predicted by thermodynamics software FactSage 7.0 and their effectiveness of heterogeneous nucleation was estimated by lattice misfit model. The solidification structure refinement by Ce inoculation under different conditions was experimentally studied by OM, SEM, EBSD and EPMA. The results show that, with increasing Ce content the reaction products transferred from Ce2O3 to Ce2O3+a small amount of Ce2O2S, and both kinds of particles can act as heterogeneous nucleation cores theoretically. For as-cast solidification structure, the ratio of equiaxed grain area increased from 25% to 72%, average equiaxed grain size decreased from 480 μm to 130 μm and the segregation ratio of Mn decreased from 1.61 to 1.41. Meanwhile, the tendency of particle agglomeration was weakened by lowering inoculation temperature, resulting in the improvement structure refinement. In this work, the recommended inoculation parameters are concluded as (0.02%~0.04%)Ce with superheat of 20 ℃.

Key wordsCe    TWIP steel    inoculation    solidification structure refinement    micro-segregation
收稿日期: 2019-09-02     
ZTFLH:  TF771.1  
基金资助:国家自然科学基金项目(51604021);中央高校基本科研业务费专项基金项目(FRF-TP-19-017A3)
作者简介: 李 根,男,1995年生,博士生
图1  铸模、铸锭及加工方式示意图

T

Superheat

Sample

No.

Mass fraction / %
CeCe yield
145050H00
145050H10.01013
145050H20.03416
145050H30.06425
142020L00
142020L10.01314
142020L20.02210
142020L30.06223
表1  孪晶诱导塑性(TWIP)钢试样的化学成分
图2  过热度50 ℃时Ce在TWIP钢中的变质处理产物
PhaseCrystal systema / nmc / nmα / (10-6-1)Caseδ / %
γ-Fefcc0.3620-25--
Ce2O3hex0.38910.606310(0001)Ce2O3//(100)γ-Fe6.2
(0001)Ce2O3//(100)γ-Fe21.0
(0001)Ce2O3//(100)γ-Fe19.5
Ce2O2Shex0.40010.683010(0001)Ce2O2S//(100)γ-Fe5.2
(0001)Ce2O2S//(100)γ-Fe24.7
(0001)Ce2O2S//(100)γ-Fe21.1
表2  Ce变质处理产物与TWIP钢凝固相间错配度[24,25,26,27]
图3  Ce变质处理产物与TWIP钢凝固相最低错配度晶面间的晶体学关系
图4  Ce变质处理对TWIP钢试样凝固组织的影响(白色实线为CET位置)
图5  Ce含量对TWIP钢试样CET位置与表面距离及等轴晶率的影响
图6  TWIP钢试样中心等轴晶区EBSD像
图7  Ce含量对TWIP钢试样等轴晶平均尺寸的影响
图8  TWIP钢变质处理试样中典型粒子SEM像及EDS分析
图9  TWIP钢变质处理试样中粒子三维尺寸分布的对数-正态概率分布图

Superheat

Fitting result
ABR2
501.35×1067.760.96
202.10×10634.340.99
表3  TWIP钢变质处理试样中粒子总数与Ce含量间拟合结果
图10  Ce变质处理对TWIP钢试样Mn显微偏析的影响
图11  Ce含量对TWIP钢试样Mn元素偏析比的影响
图12  钢中常见粒子与奥氏体相间的错配度、标准Gibbs生成能与密度[31,32,33,34,35,36,37]
图13  Ce变质处理对TWIP钢试样凝固织构的影响
1 Grässel O, Frommeyer G. Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels [J]. Mater. Sci. Technol., 1998, 14: 1213
doi: 10.1179/mst.1998.14.12.1213
2 Grässel O, Krüger L, Frommeyer G, et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application [J]. Int. J. Plast., 2000, 16: 1391
doi: 10.1016/S0749-6419(00)00015-2
3 Lan P, Zhang J Q. Tensile property and microstructure of Fe-22Mn-0.5C TWIP steel [J]. Mater. Sci. Eng., 2017, A707: 373
4 Scott C, Remy B, Collet J L, et al. Precipitation strengthening in high manganese austenitic TWIP steels [J]. Int. J. Mater. Res., 2011, 102: 538
5 Kang S, Jung J G, Kang M, et al. The effects of grain size on yielding, strain hardening, and mechanical twinning in Fe-18Mn-0.6C-1.5Al twinning-induced plasticity steel [J]. Mater. Sci. Eng., 2016, A652: 212
6 Yang J, Wang Y N, Ruan X M, et al. Effects of manganese content on solidification structures, thermal properties, and phase transformation characteristics in Fe-Mn-Al-C steels [J]. Metall. Mater. Trans., 2015, 46B: 1365
7 Chen L Q, Zhao Y, Qin X M. Some aspects of high manganese twinning-induced plasticity (TWIP) steel, a review [J]. Acta Metall. Sin. (Engl. Lett., 2013, 26: 1
8 Wang X, Fang Y, Zhang G C, et al. Optimizing smelt and CC technology of the small billet of high manganese steel [J]. Contin. Cast., 2014, (2): 11
8 王 翔, 方 颖, 张国成等. 高锰钢小方坯冶炼连铸工艺优化 [J]. 连铸, 2014, (2): 11
9 Zhou Y H, Wang X, Fang Y, et al. The small billet CC process development of high manganese steel [J]. Mod. Mach., 2013, (2): 67
pmid: 14358693
9 周英豪, 王 翔, 方 颖等. 高锰钢小方坯连铸工艺开发 [J]. 现代机械, 2013, (2): 67
pmid: 14358693
10 Daamen M, Richter S, Hirt G. Microstructure analysis of high-manganese TWIP steels produced via strip casting [J]. Key Eng. Mater., 2013, 554-557: 553
11 Lan P, Zhang J Q. Thermophysical properties and solidification defects of Fe-22Mn-0.7C TWIP steel [J]. Steel Res. Int., 2016, 87: 250
12 Lan P, Tang H Y, Ji Y, et al. Hot ductility and fracture mechanism of Fe-22Mn-0.7C TWIP steel [J]. Chin. J. Eng., 2016, 38: 795
12 兰 鹏, 唐海燕, 纪 元等. Fe-22Mn-0.7CTWIP钢的热塑性与断裂机制 [J]. 工程科学学报, 2016, 38: 795
13 Li S Q, Liu J H, Liu H B, et al. Microsegregation in low carbon Fe-Mn-Si-Al TWIP steel [J]. Chin. J. Eng., 2016, 38: 937
13 李世琪, 刘建华, 刘洪波等. 低碳Fe-Mn-Si-Al系TWIP钢的显微偏析行为 [J]. 工程科学学报, 2016, 38: 937
14 Ohno M, Matsuura K. Refinement of as-cast austenite microstructure in S45C steel by titanium addition [J]. ISIJ Int., 2008, 48: 1373
15 Li M, Li J M, Zheng Q, et al. A new grain refiner for ferritic steels [J]. Metall. Mater. Trans., 2017, 48B: 2902
16 Liu Z L. Review of grain refinement of cast metals through inoculation: Theories and developments [J]. Metall. Mater. Trans., 2017, 48A: 4755
17 Greer A L, Bunn A M, Tronche A, et al. Modelling of inoculation of metallic melts: Application to grain refinement of aluminium by Al-Ti-B [J]. Acta Mater., 2000, 48: 2823
18 Liu S F, Huang S Y, Xu P. Influence of cerium addition on as-cast microstructure refinement of AZ91 magnesium alloy [J]. Acta Metall. Sin., 2006, 42: 443
18 刘生发, 黄尚宇, 徐 萍. Ce对AZ91镁合金铸态组织细化的影响 [J]. 金属学报, 2006, 42: 443
19 Heo Y U, Lee S Y, Cho J W, et al. Effects of Ce and P addition on as-cast structure and formation mechanism of cerium compounds in Ce-added TWIP steels [J]. Mater. Charact., 2016, 120: 234
20 Guo M X, Suito H. Influence of dissolved cerium and primary inclusion particles of Ce2O3 and CeS on solidification behavior of Fe-0.20 mass%C-0.02 mass%P alloy [J]. ISIJ Int., 1999, 39: 722
21 Nuri Y, Ohashi T, Hiromoto T, et al. Solidification microstructure of ingots and continuously cast slabs treated with rare earth metal [J]. Trans. Iron Steel Inst. Jpn., 1982, 22: 399
doi: 10.2355/isijinternational1966.22.399
22 Huang Y, Cheng G G, Xie Y. Modification mechanism of cerium on the inclusions in drill steel [J]. Acta Metall. Sin., 2018, 54: 1253
doi: 10.11900/0412.1961.2018.00079
22 黄 宇, 成国光, 谢 有. 稀土Ce对钎具钢中夹杂物的改质机理研究 [J]. 金属学报, 2018, 54: 1253
doi: 10.11900/0412.1961.2018.00079
23 Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron [J]. Metall. Trans., 1970, 1: 1987
doi: 10.1007/BF02642799
24 Babu S S, Specht E D, David S A, et al. In-situ observations of lattice parameter fluctuations in austenite and transformation to bainite [J]. Metall. Mater. Trans., 2005, 36A: 3281
25 Benz R. Ce2O2Sb and Ce2O2Bi crystal structure [J]. Acta Crystallogr. Sect., 1971, 27B: 853
26 Bärnighausen H, Schiller G. The crystal structure of A-Ce2O3 [J]. J. Less Common Met., 1985, 110: 385
27 de Andrés G, Caballero F G, Capdevila C, et al. Modelling of kinetics and dilatometric behavior of non-isothermal pearlite-to-austenite transformation in an eutectoid steel [J]. Scr. Mater., 1998, 39: 791
28 Li T, Shimasaki S I, Taniguchi S, et al. Stereological analysis of nonspherical particles in solid metal [J]. Metall. Mater. Trans., 2013, 44B: 750
29 Guo M X, Suito H. Dispersion of primary inclusions of Ce2O3 and CeS in Fe-0.20 mass%C-0.02 mass%P alloy [J]. ISIJ Int., 1999, 39: 678
30 Gao X Z. Fundamental research on the application of nanoparticles added from outside in non-quenched and tempered steel 35MnVS [D]. Beijing: University of Science and Technology Beijing, 2017
30 高向宙. 外加纳米粒子技术在非调质钢35MnVS中应用的基础研究 [D]. 北京: 北京科技大学, 2017
31 Li G, Lu M G, Lan P, et al. Research progress of rare earth Ce on improvement of microstructure and homogeneity of as-cast steel [J]. J. Iron Steel Res., 2018, 30: 79
31 李 根, 陆民刚, 兰 鹏等. 稀土Ce改善钢铸态组织与均质性的研究进展 [J]. 钢铁研究学报, 2018, 30: 79
32 Suito H, Ohta H, Morioka S. Refinement of solidification microstructure and austenite grain by fine inclusion particles [J]. ISIJ Int., 2006, 46: 840
33 Sawai T, Wakoh M, Ueshima Y, et al. Analysis of oxide dispersion during solidification in Ti, Zr-deoxidized steels [J]. ISIJ Int., 1992, 32: 169
34 Pak J J, Jeong Y S, Hong I K, et al. Thermodynamics of TiN formation in Fe-Cr melts [J]. ISIJ Int., 2005, 45: 1106
35 Suito H, Inoue R. Thermodynamics on control of inclusions composition in ultraclean steels [J]. ISIJ Int., 1996, 36: 528
36 Ohta H, Suito H. Precipitation and dispersion control of MnS by deoxidation products of ZrO2, Al2O3, MgO and MnO-SiO2 particles in Fe-10mass%Ni alloy [J]. ISIJ Int., 2006, 46: 480
37 Pan N, Song B, Zhai Q J, et al. Effect of lattice disregistry on the heterogeneous nucleation catalysis of liquid steel [J]. J. Univ. Sci. Technol. Beijing, 2010, 32: 179
37 潘 宁, 宋 波, 翟启杰等. 钢液非均质形核触媒效用的点阵错配度理论 [J]. 北京科技大学学报, 2010, 32: 179
38 Hou Y Y, Cheng G G. Formation mechanism and nucleation effect of Ti2O3-TiN complex nucleus at solidification front of 18Cr ferritic stainless steel [J]. Metall. Mater. Trans., 2019, 50B: 1351
39 Li Y, Yang G, Jiang Z H, et al. Effects of Ce on the microstructure and properties of 27Cr-3.8Mo-2Ni super-ferritic stainless steels [J]. Ironmaking Steelmaking, 2020, 47: 67
40 Song S H, Sun S F. Effect of rare‐earth cerium on impurity tin‐induced hot ductility deterioration of SA508‐III reactor pressure vessel steel [J]. Steel Res. Int., 2016, 87: 1435
41 Ohashi T, Hiromoto T, Fujii H, et al. Effect of oxides on nucleation behaviour in supercooled iron [J]. Tetsu Hagané, 1976, 62: 614
41 大橋徹郎, 広本 健, 藤井博務等. 鉄の不均質核生成におよぼす酸化物の影響 [J]. 鐵と鋼, 1976, 62: 614
42 StJohn D H, Qian M, Easton M A, et al. The interdependence theory: The relationship between grain formation and nucleant selection [J]. Acta Mater., 2011, 59: 4907
doi: 10.1016/j.actamat.2011.04.035
43 Easton M A, StJohn D H. Improved prediction of the grain size of aluminum alloys that includes the effect of cooling rate [J]. Mater. Sci. Eng., 2008, A486: 8
44 Du Q, Li Y J. An extension of the Kampmann-Wagner numerical model towards as-cast grain size prediction of multicomponent aluminum alloys [J]. Acta Mater., 2014, 71: 380
45 Wang X F, Chen W Q. Influence of cerium on hot workability of 00Cr25Ni7Mo4N super duplex stainless steel [J]. J. Rare Earths, 2010, 28: 295
46 Jo M C, Lee H, Zargaran A, et al. Exceptional combination of ultra-high strength and excellent ductility by inevitably generated Mn-segregation in austenitic steel [J]. Mater. Sci. Eng., 2018, A737: 69
[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 刘洁, 徐乐, 史超, 杨少朋, 何肖飞, 王毛球, 时捷. 稀土Ce对非调质钢中硫化物特征及微观组织的影响[J]. 金属学报, 2022, 58(3): 365-374.
[3] 彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.
[4] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[5] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[6] 李金许,王伟,周耀,刘神光,付豪,王正,阚博. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
[7] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[8] 张林,满田囡,王恩刚. 弥散固态颗粒对Al-Bi合金液-液相分离过程的影响[J]. 金属学报, 2019, 55(3): 399-409.
[9] 黄宇, 成国光, 谢有. 稀土Ce对钎具钢中夹杂物的改质机理研究[J]. 金属学报, 2018, 54(9): 1253-1261.
[10] 王帅鹏, 罗文华, 李赣, 李海波, 张广丰. La含量对Ce-La合金氢化动力学的影响[J]. 金属学报, 2018, 54(8): 1187-1192.
[11] 帅三三, 林鑫, 肖武泉, 余建波, 王江, 任忠鸣. 横向静磁场对激光熔化增材制造Al-12%Si合金凝固组织的影响[J]. 金属学报, 2018, 54(6): 918-926.
[12] 周小卫,欧阳春,乔岩欣,沈以赴. 活性Ti表面电沉积Ni-CeO2复合镀层及其强韧性机理分析[J]. 金属学报, 2017, 53(2): 140-152.
[13] 余建波, 侯渊, 张超, 杨志彬, 王江, 任忠鸣. 静磁场对新型Co-Al-W基高温合金定向凝固组织的影响[J]. 金属学报, 2017, 53(12): 1620-1626.
[14] 李安华, 张月明, 冯海波, 邹宁, 吕忠山, 邹旭杰, 李卫. 烧结Ce-Fe-B磁体的力学性能[J]. 金属学报, 2017, 53(11): 1478-1486.
[15] 李军,葛鸿浩,GE Honghao,WU Menghuai,李建国. 基于热溶质对流及晶粒运动的柱状晶-非球状等轴晶混合三相模型*[J]. 金属学报, 2016, 52(9): 1096-1104.