Please wait a minute...
金属学报  2020, Vol. 56 Issue (10): 1366-1376    DOI: 10.11900/0412.1961.2020.00035
  本期目录 | 过刊浏览 |
ODS钢在600700 ℃静态Pb-Bi共晶中的腐蚀行为及机理
包飞洋1,2, 李艳芬1,2,3(), 王光全2,4, 张家榕2, 严伟1,2,3, 石全强2,3, 单以银1,2,3, 杨柯1,2, 许斌5, 宋丹戎5, 严明宇5, 魏学栋5
1 中国科学技术大学材料科学与工程学院 沈阳 110016
2 中国科学院金属研究所 沈阳 110016
3 中国科学院金属研究所中国科学院核用材料与安全评价重点实验室 沈阳 110016
4 中国科学技术大学纳米科学与技术学院 苏州 215000
5 中国核动力研究设计院 成都 610005
Corrosion Behaviors and Mechanisms of ODS Steel Exposed to Static Pb-Bi Eutectic at 600 and 700 ℃
BAO Feiyang1,2, LI Yanfen1,2,3(), WANG Guangquan2,4, ZHANG Jiarong2, YAN Wei1,2,3, SHI Quanqiang2,3, SHAN Yiyin1,2,3, YANG Ke1,2, XU Bin5, SONG Danrong5, YAN Mingyu5, WEI Xuedong5
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4 Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215000, China
5 Nuclear Power Institute of China, Chengdu 610005, China
引用本文:

包飞洋, 李艳芬, 王光全, 张家榕, 严伟, 石全强, 单以银, 杨柯, 许斌, 宋丹戎, 严明宇, 魏学栋. ODS钢在600700 ℃静态Pb-Bi共晶中的腐蚀行为及机理[J]. 金属学报, 2020, 56(10): 1366-1376.
Feiyang BAO, Yanfen LI, Guangquan WANG, Jiarong ZHANG, Wei YAN, Quanqiang SHI, Yiyin SHAN, Ke YANG, Bin XU, Danrong SONG, Mingyu YAN, Xuedong WEI. Corrosion Behaviors and Mechanisms of ODS Steel Exposed to Static Pb-Bi Eutectic at 600 and 700 ℃[J]. Acta Metall Sin, 2020, 56(10): 1366-1376.

全文: PDF(3522 KB)   HTML
摘要: 

以一种极具潜力的先进核能候选氧化物弥散强化(ODS)钢为研究对象,以不控制氧浓度的液态金属Pb-Bi共晶(LBE)为腐蚀介质,研究了静态下高温(600和700 ℃)不同腐蚀时间对ODS钢腐蚀行为的影响及其微观机制。结果表明,600 ℃腐蚀至2000 h,ODS钢表面生成总厚度约为10 μm的典型双层氧化膜,同时在内氧化层下方形成了一层较薄的富Al氧化层。基于致密的尖晶石内氧化层及富Al氧化层的保护作用有效减缓了腐蚀氧化速率,ODS钢显示优异于其它材料的耐LBE腐蚀性能。ODS钢在700 ℃腐蚀所形成的氧化膜结构及厚度与600 ℃明显不同:腐蚀100 h主要形成了厚度约为500 nm的Al2O3保护膜,大幅降低了腐蚀速率;腐蚀时间延长至500 h,大部分区域Al2O3氧化膜仍然存在,但同时出现的少量“疖状氧化物”破坏了Al2O3保护膜的连续性,从而成为了腐蚀的突破口。

关键词 先进核能系统Pb-Bi共晶(LBE)氧化物弥散强化(ODS)钢高温腐蚀氧化膜    
Abstract

With good neutron properties, anti-irradiation performances, heat transfer properties and inherent safety characteristics, liquid lead or Pb-Bi eutectic (LBE) has been a primary candidate coolant for accelerator driven system and advanced nuclear reactors. However, corrosion of structural materials is a critical challenge in the use of liquid lead and LBE in high temperature nuclear reactors. Therefore, research on corrosion compatibility of structural materials with LBE at elevated temperatures is of great significance. In this work, the long-term corrosion experiments in static LBE for a oxide dispersion strengthened (ODS) steel were carried out at 600 and 700 ℃. The temperature effects on different corrosion behaviors were studied by the analyses of XRD, SEM and EDS, and the underlying mechanisms were clarified. After exposing to LBE at 600 ℃ for up to 2000 h, a typical double-layer oxide scale with the thickness of about 10 μm was formed on the surface of ODS steel, which was composed of outer layers of Pb-Fe-O and Fe3O4 and inner layer of Fe-Cr-Al spinal. In addition, a thin Al-rich layer was also formed under the inner layer. Due to the protective effect of the relatively dense inner layer and the Al-rich layer, ODS steel showed excellent resistance to LBE corrosion at 600 ℃ with a significantly lower corrosion rate. On the contrary, when exposed to LBE at 700 ℃ , the structure and thickness of the oxide scale formed on the surface of the ODS steel were obviously different. After exposure for 100 h, a dense protective Al2O3 oxide layer with a thickness of about 500 nm was formed, greatly reducing the corrosion rate. With the corrosion time prolonging to 500 h at 700 ℃, most of Al2O3 layer was still remained. However, a few of nodular-like oxides were formed originated from local weak areas, which broken off the continuity of protective Al2O3 and led to deeper corrosion by LBE.

Key wordsadvanced nuclear energy system    Pb-Bi eutectic (LBE)    oxide dispersion strengthened (ODS) steel    high temperature corrosion    oxide scale
收稿日期: 2020-01-21     
ZTFLH:  TG172  
基金资助:国防科技工业核动力技术创新中心项目(HDLCXZX-2019-HD-15-01);国家自然科学基金项目(U1832206);中科院金属研究所“优秀学者”人才引进项目(JY7A7A111A1)
作者简介: 包飞洋,女,1995年,硕士生
图1  腐蚀实验设备的结构示意图
图2  ODS钢在静态Pb-Bi共晶(LBE)中腐蚀不同时间后表面氧化物的XRD谱
图3  ODS钢在600 ℃静态LBE中腐蚀不同时间表面腐蚀形貌的变化
图4  ODS钢在600 ℃静态LBE中腐蚀100 h的表面形貌
PositionMass fraction / % (atomic fraction / %)Compound
CrAlOFePb

Area 1

(bamboo leaf-like oxide)

--18.91 (52.49)51.90 (41.26)29.19 (6.25)PbO·xFe2O3

Area 2

(octahedral particle)

1.00 (0.66)-26.24 (56.40)68.62 (42.26)4.14 (0.69)Fe3O4

Area 3

(matrix)

12.52 (11.56)6.20 (11.02)4.78 (14.34)72.24 (62.09)4.27 (0.99)Al-riched matrix
表1  图4中ODS钢在600 ℃静态LBE中腐蚀100 h表面氧化物的EDS分析
图5  ODS钢在700 ℃静态LBE中腐蚀不同时间的表面腐蚀形貌
PositionMass fraction / % (atomic fraction / %)Compound
CrAlOFePb

Area 1

(nodule)

-1.31 (2.49)14.97 (45.10)52.30 (45.13)31.34 (7.29)PbO·xFe2O3

Area 2

(particle)

9.73 (6.31)19.32 (24.13)17.72 (37.72)53.23 (32.16)-Al2O3

Area 3

(flaky oxide)

1.15 (0.70)23.92 (27.79)30.40 (59.54)12.79 (7.18)31.73 (4.8)PbAl2O4
表2  图5e和f中ODS钢在700 ℃静态LBE中腐蚀500 h表面氧化物的EDS分析
图6  ODS钢在600 ℃静态LBE中腐蚀不同时间的截面形貌
图7  ODS钢在600 ℃静态LBE中腐蚀500 h截面的EDS面分析
图8  ODS钢在700 ℃静态LBE中腐蚀100和500 h后的腐蚀截面形貌
图9  ODS钢在700 ℃静态LBE中腐蚀500 h的截面成分EDS面分析
[1] Lorusso P, Bassini S, Del Nevo A, et al. GEN-IV LFR development: Status & perspectives [J]. Prog. Nucl. Energy, 2018, 105: 318
doi: 10.1016/j.pnucene.2018.02.005
[2] Fiori F, Zhou Z. A study on the Chinese nuclear energy options and the role of ADS reactor in the Chinese nuclear expansion [J]. Prog. Nucl. Energy, 2016, 91: 159
doi: 10.1016/j.pnucene.2016.04.003
[3] Zhang J S. A review of steel corrosion by liquid lead and lead-bismuth [J]. Corros. Sci., 2009, 51: 1207
doi: 10.1016/j.corsci.2009.03.013
[4] Ballinger R G, Lim J. An overview of corrosion issues for the design and operation of high-temperature lead- and lead-bismuth-cooled reactor systems [J]. Nucl. Technol., 2004, 147: 418
doi: 10.13182/NT04-A3540
[5] Zhang J S, Li N. Review of the studies on fundamental issues in LBE corrosion [J]. J. Nucl. Mater., 2008, 373: 351
doi: 10.1016/j.jnucmat.2007.06.019
[6] Yeliseyeva O, Tsisar V, Benamati G. Influence of temperature on the interaction mode of T91 and AISI 316L steels with Pb-Bi melt saturated by oxygen [J]. Corros. Sci., 2008, 50: 1672
doi: 10.1016/j.corsci.2008.02.006
[7] Schroer C, Wedemeyer O, Novotny J, et al. Selective leaching of nickel and chromium from type 316 austenitic steel in oxygen-containing lead-bismuth eutectic (LBE) [J]. Corros. Sci., 2014, 84: 113
doi: 10.1016/j.corsci.2014.03.016
[8] Martinelli L, Balbaud-Célérier F, Terlain A, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part I) [J]. Corros. Sci., 2008, 50: 2523
doi: 10.1016/j.corsci.2008.06.050
[9] Martinelli L, Balbaud-Célérier F, Terlain A, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy at 470 ℃ (Part II) [J]. Corros. Sci., 2008, 50: 2537
[10] Martinelli L, Balbaud-Célérier F, Picard G, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part III) [J]. Corros. Sci., 2008, 50: 2549
[11] Yang K, Yan W, Wang Z G, et al. Development of a novel structural material (SIMP steel) for nuclear equipment with balanced resistances to high temperature, radiation and liquid metal corrosion [J]. Acta Metall. Sin., 2016, 52: 1207
doi: 10.11900/0412.1961.2016.00320
[11] (杨 柯, 严 伟, 王志光等. 核用新型耐高温、抗辐照、耐液态金属腐蚀结构材料——SIMP钢的研究进展 [J]. 金属学报, 2016, 52: 1207)
doi: 10.11900/0412.1961.2016.00320
[12] Yamaki E, Ginestar K, Martinelli L. Dissolution mechanism of 316L in lead-bismuth eutectic at 500 ℃ [J]. Corros. Sci., 2011, 53: 3075
doi: 10.1016/j.corsci.2011.05.031
[13] Gong X, Marmy P, Volodin A, et al. Multiscale investigation of quasi-brittle fracture characteristics in a 9Cr-1Mo ferritic-martensitic steel embrittled by liquid lead-bismuth under low cycle fatigue [J]. Corros. Sci., 2016, 102: 137
doi: 10.1016/j.corsci.2015.10.003
[14] Sapundjiev D, van Dyck S, Bogaerts W. Liquid metal corrosion of T91 and A316L materials in Pb-Bi eutectic at temperatures 400-600 ℃ [J]. Corros. Sci., 2006, 48: 577
doi: 10.1016/j.corsci.2005.04.001
[15] Tsisar V, Yeliseyeva O. Oxidation of Armco-Fe and steels in oxygen saturated liquid lead [J]. Mater. High Temp., 2007, 24: 93
doi: 10.3184/096034007X220034
[16] Weisenburger A, Aoto K, Müller G, et al. Behaviour of chromium steels in liquid Pb-55.5Bi with changing oxygen content and temperature [J]. J. Nucl. Mater., 2006, 358: 69
doi: 10.1016/j.jnucmat.2006.07.001
[17] Wang J, Lu S P, Rong L J, et al. Effect of silicon on the oxidation resistance of 9wt.% Cr heat resistance steels in 550 ℃ lead-bismuth eutectic [J]. Corros. Sci., 2016, 111: 13
doi: 10.1016/j.corsci.2016.04.020
[18] Kurata Y, Futakawa M, Saito S. Comparison of the corrosion behavior of austenitic and ferritic/martensitic steels exposed to static liquid Pb-Bi at 450 and 550 ℃ [J]. J. Nucl. Mater., 2005, 343: 333
doi: 10.1016/j.jnucmat.2004.07.064
[19] Müller G, Heinzel A, Konys J, et al. Results of steel corrosion tests in flowing liquid Pb/Bi at 420-600 ℃ after 2000 h [J]. J. Nucl. Mater., 2002, 301: 40
doi: 10.1016/S0022-3115(01)00725-5
[20] Del Giacco M, Weisenburger A, Müller G. Fretting of fuel cladding materials for Pb cooled fast reactors-Approach to long term prediction using fretting maps [J]. Nucl. Eng. Des., 2014, 280: 697
doi: 10.1016/j.nucengdes.2014.05.043
[21] Kelly J E. Generation IV international forum: A decade of progress through international cooperation [J]. Prog. Nucl. Energy, 2014, 77: 240
doi: 10.1016/j.pnucene.2014.02.010
[22] Odette G R. On the status and prospects for nanostructured ferritic alloys for nuclear fission and fusion application with emphasis on the underlying science [J]. Scr. Mater., 2018, 143: 142
doi: 10.1016/j.scriptamat.2017.06.021
[23] Li Y F, Nagasaka T, Muroga T, et al. High-temperature mechanical properties and microstructure of 9Cr oxide dispersion strengthened steel compared with RAFMs [J]. Fusion Eng. Des., 2011, 86: 2495
doi: 10.1016/j.fusengdes.2011.03.004
[24] Song L L, Yang X Y, Zhao Y Y, et al. Si-containing 9Cr ODS steel designed for high temperature application in lead-cooled fast reactor [J]. J. Nucl. Mater., 2019, 519: 22
[25] Schroer C, Konys J, Furukawa T, et al. Oxidation behaviour of P122 and a 9Cr-2W ODS steel at 550 ℃ in oxygen-containing flowing lead-bismuth eutectic [J]. J. Nucl. Mater., 2010, 398: 109
doi: 10.1016/j.jnucmat.2009.10.019
[26] Hosemann P, Thau H T, Johnson A L, et al. Corrosion of ODS steels in lead-bismuth eutectic [J]. J. Nucl. Mater., 2008, 373: 246
[27] Hojna A, Hadraba H, Di Gabriele F, et al. Behaviour of pre-stressed T91 and ODS steels exposed to liquid lead-bismuth eutectic [J]. Corros. Sci., 2018, 131: 264
[28] Tsisar V P. Oxidation of ferritic steels dispersion strengthened with TiO2 and Y2O3 oxides in lead melt [J]. Mater. Sci., 2008, 44: 630
doi: 10.1007/s11003-009-9139-x
[29] Baker B W, Brewer L N. Evaluation of liquid metal embrittlement of oxide dispersion strengthened steel MA956 [J]. Microsc. Microanal., 2014, 20(S3): 1852
doi: 10.1017/S143192761401099X
[30] Lim J, Nam H O, Hwang I S, et al. A study of early corrosion behaviors of FeCrAl alloys in liquid lead-bismuth eutectic environments [J]. J. Nucl. Mater., 2010, 407: 205
doi: 10.1016/j.jnucmat.2010.10.018
[31] Lim J, Hwang I S, Kim J H. Design of alumina forming FeCrAl steels for lead or lead-bismuth cooled fast reactors [J]. J. Nucl. Mater., 2013, 441: 650
doi: 10.1016/j.jnucmat.2012.04.006
[32] Jianu A, Fetzer R, Weisenburger A, et al. Stability domain of alumina thermally grown on Fe-Cr-Al-based model alloys and modified surface layers exposed to oxygen-containing molten Pb [J]. J. Nucl. Mater., 2016, 470: 68
doi: 10.1016/j.jnucmat.2015.12.009
[33] Short M P, Ballinger R G, Hänninen H E. Corrosion resistance of alloys F91 and Fe-12Cr-2Si in lead-bismuth eutectic up to 715 ℃ [J]. J. Nucl. Mater., 2013, 434: 259
doi: 10.1016/j.jnucmat.2012.11.010
[34] Li Y F, Yan W, Xu B, et al. Design and fabrication of a novel structural ODS material with resistances to corrosion and irradiation and high strength [P]. Chin Pat, 201911332252.3, 2019
[34] (李艳芬, 严 伟, 许 斌等. 一种耐腐蚀、抗辐照、高强度的超级ODS钢及制备方法 [P]. 中国专利,201911332252.3, 2019)
[35] Li M S. High Temperature Corrosion of Metals [M]. Beijing: Metallurgical Industry Press, 2001: 5
[35] (李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 5)
[36] Shi Q Q, Liu J, Luan H, et al. Oxidation behavior of ferritic/martensitic steels in stagnant liquid LBE saturated by oxygen at 600 ℃ [J]. J. Nucl. Mater., 2015, 457: 135
doi: 10.1016/j.jnucmat.2014.11.018
[37] Martinelli L, Dufrenoy T, Jaakou K, et al. High temperature oxidation of Fe-9Cr-1Mo steel in stagnant liquid lead-bismuth at several temperatures and for different lead contents in the liquid alloy [J]. J. Nucl. Mater., 2008, 376: 282
doi: 10.1016/j.jnucmat.2008.02.006
[38] Yeliseyeva O, Tsisar V. Comparison of oxidation of ferritic-martensitic steel EP-823 and Armco-Fe in Pb melt saturated by oxygen [J]. J. Corros. Sci. Eng., 2004, 7: 37
[39] Gromov B F, Orlov Y I, Martynov P N, et al. Liquid Metal Systems [M]. Boston: Springer, 1995: 339
[40] Weisenburger A, Jianu A, Doyle S, et al. Oxide scales formed on Fe-Cr-Al-based model alloys exposed to oxygen containing molten lead [J]. J. Nucl. Mater., 2013, 437: 282
doi: 10.1016/j.jnucmat.2013.02.044
[41] Tomaszewicz P, Wallwork G R. Observations of nodule growth during the oxidation of pure binary iron-aluminum alloys [J]. Oxid. Met., 1983, 19: 165
[42] Zhang Z G, Niu Y. Effect of chromium on the oxidation of a Fe-10Al alloy at 1000 ℃ [J]. Mater. Sci. Forum, 2005, 475-479: 685
doi: 10.4028/www.scientific.net/MSF.475-479
[1] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[2] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[3] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[4] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.
[5] 林晓冬, 马海滨, 任啟森, 孙蓉蓉, 张文怀, 胡丽娟, 梁雪, 李毅丰, 姚美意. Fe13Cr5Al4Mo合金在高温高压水环境中的腐蚀行为[J]. 金属学报, 2022, 58(12): 1611-1622.
[6] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.
[7] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[8] 张笑一, 尚海龙, 马冰洋, 李荣斌, 李戈扬. 镀膜Al箔钎料对AlN陶瓷的钎焊[J]. 金属学报, 2018, 54(4): 575-580.
[9] 郭策安, 陈明辉, 廖依敏, 苏北, 谢冬柏, 朱圣龙, 王福会. 模拟燃气热冲击条件下搪瓷基复合涂层的防护机理研究[J]. 金属学报, 2018, 54(12): 1825-1832.
[10] 杨忠波,赵文金,程竹青,邱军,张海,卓洪. Nb含量对 Zr-xNb-0.4Sn-0.3Fe合金耐腐蚀性能的影响[J]. 金属学报, 2017, 53(1): 47-56.
[11] 王家贞,王俭秋,韩恩厚. 800合金在300 ℃ NaOH和ETA溶液中的腐蚀行为*[J]. 金属学报, 2016, 52(5): 599-606.
[12] 欧美琼,刘扬,查向东,马颖澈,程乐明,刘奎. 一种新型镍基合金在超临界多种离子共存环境下的腐蚀行为*[J]. 金属学报, 2016, 52(12): 1557-1564.
[13] 王俭秋, 黄发, 柯伟. Inconel 690TT和Incoloy 800MA蒸汽发生器管材在高温高压水中的腐蚀行为研究*[J]. 金属学报, 2016, 52(10): 1333-1344.
[14] 苟少秋,周邦新,谢世敬,徐龙,姚美意,李强. Zr-4合金在LiOH水溶液中腐蚀时氧化膜生长各向异性的研究*[J]. 金属学报, 2015, 51(8): 993-1000.
[15] 彭以超, 张麦仓, 杜晨阳, 董建新. 服役态Cr35Ni45Nb合金高温真空渗碳行为及相演化机理研究[J]. 金属学报, 2015, 51(1): 11-20.