|
|
缝隙腐蚀对Fe-30Mn-1C合金降解速率的影响 |
马政, 陆喜, 高明, 谭丽丽( ), 杨柯 |
中国科学院金属研究所 沈阳 110016 |
|
Effect of Crevice Corrosion on the Degradation Rate ofFe-30Mn-1C Alloy |
Zheng MA, Xi LU, Ming GAO, Lili TAN( ), Ke YANG |
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
马政, 陆喜, 高明, 谭丽丽, 杨柯. 缝隙腐蚀对Fe-30Mn-1C合金降解速率的影响[J]. 金属学报, 2018, 54(7): 1010-1018.
Zheng MA,
Xi LU,
Ming GAO,
Lili TAN,
Ke YANG.
Effect of Crevice Corrosion on the Degradation Rate ofFe-30Mn-1C Alloy[J]. Acta Metall Sin, 2018, 54(7): 1010-1018.
[1] | Li J J.Inflammatory response, drug-eluting stent and restenosis[J]. Chin. Med. J.(Engl.), 2008, 121: 566 | [2] | Li J J.The study on the occurrence of restenosis is a long-term problem in the interventional therapy of coronary heart disease[J]. Chin. Circ. J., 2008, 23: 401(李建军. 再狭窄发生的相关研究是冠心病介入治疗的长期课题[J]. 中国循环杂志, 2008, 23: 401) | [3] | Zhou J, Ding Y.Thinking on the comparation of therapies on coronary heart disease[J]. Med. Philos.(Clin. Dec. Mak. Forum Ed.), 2006, 27(4): 36(周江, 丁彦. 冠心病治疗方法的比较思考[J]. 医学与哲学(临床决策论坛版), 2006, 27(4): 36) | [4] | Wei L L, Liu P, Zhang H Y.Therapy choices for coronary heart disease[J]. Med. Philos.(Clin. Dec. Mak. Forum Ed.), 2009, 30(7): 8(魏来临, 刘平, 张华岩. 冠心病理想治疗方式的选择[J]. 医学与哲学(临床决策论坛版), 2009, 30(7): 8) | [5] | Boden W E, O'Rourke R A, Teo K K, et al. Optimal medical therapy with or without PCI for stable coronary disease[J]. N. Engl. J. Med., 2007, 356: 1503 | [6] | Liu J, Cong H L.Progress of interventional therapy for coronary artery disease[J]. Med. Recapitul., 2008, 14: 2512(刘健, 丛洪良. 冠心病介入治疗的进展[J]. 医学综述, 2008, 14: 2512) | [7] | Wu Y H, Zhou X C, Zheng Y F, et al.Research progress on biodegradable metallic endovascular stents[J]. Mater. China, 2012, 31(9): 27(吴远浩, 周晓晨, 郑玉峰等. 可降解金属血管支架研究进展[J]. 中国材料进展, 2012, 31(9): 27) | [8] | Virtanen S.Biodegradable Mg and Mg alloys: Corrosion and biocompatibility[J]. Mater. Sci. Eng., 2011, B176: 1600 | [9] | Wagener V, Schilling A, Mainka A, et al.Cell adhesion on surface-functionalized magnesium[J]. ACS Appl. Mater. Interfaces, 2016, 8: 11998 | [10] | Schinhammer M, H?nzi A C, L?ffler J F, et al.Design strategy for biodegradable Fe-based alloys for medical applications[J]. Acta Biomater., 2010, 6: 1705 | [11] | Schinhammer M, Gerber I, Hanzi A C, et al.On the cytocompatibility of biodegradable Fe-based alloys[J]. Mater. Sci. Eng., 2013, C33: 782 | [12] | Purnama, A, Hermawan, H, Champetier, S, et al. Gene expression profile of mouse fibroblasts exposed to a biodegradable iron alloy for stents[J]. Acta Biomater., 2013, 9: 8746 | [13] | Xu W L, Lu X, Tan L L, et al.Study on properties of a novel biodegradable Fe-30Mn-1C alloy[J]. Acta Metall. Sin., 2011, 47: 1342(徐文利, 陆喜, 谭丽丽等. 新型生物可降解Fe-30Mn-1C合金的性能研究[J]. 金属学报, 2011, 47: 1342) | [14] | Francis A, Yang Y, Virtanen S, et al.Iron and iron-based alloys for temporary cardiovascular applications[J]. J. Mater. Sci.: Mater. Med., 2015, 26: 138 | [15] | Mouzou E, Paternoster C, Tolouei R, et al.In vitro degradation behavior of Fe-20Mn-1.2C alloy in three different pseudo-physiological solutions[J]. Mater. Sci. Eng., 2016, C61: 564 | [16] | Obayi C S, Tolouei R, Paternoster C, et al.Influence of cross-rolling on the micro-texture and biodegradation of pure iron as biodegradable material for medical implants[J]. Acta Biomater., 2015, 17: 68 | [17] | Huang T, Cheng J, Zheng Y F.In vitro degradation and biocompatibility of Fe-Pd and Fe-Pt composites fabricated by spark plasma sintering[J]. Mater. Sci. Eng., 2014, C35: 43 | [18] | ?apek J, Vojtěch D.Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy[J]. Mater. Sci. Eng., 2014, C43: 494 | [19] | Zhang B H, Cong W B, Yang P.Metal Electrochemical Corrosion and Protection [M]. Beijing: Chemical Industry Press, 2005: 79(张宝宏, 从文博, 杨萍. 金属电化学腐蚀与防护 [M]. 北京: 化学工业出版社, 2005: 79) | [20] | Hermawan H, Dubé D, Mantovani D. Development of degradable Fe-35Mn alloy for biomedical application [J]. Adv. Mater. Res., 2007, 15-17: 107 | [21] | Hermawan H, Purnama A, Dube D, et al.Fe-Mn alloys for metallic biodegradable stents: Degradation and cell viability studies[J]. Acta Biomater., 2010, 6: 1852 | [22] | Hermawan H, Moravej M, Dubé D, et al. Degradation behaviour of metallic biomaterials for degradable stents [J]. Adv. Mater. Res., 2007, 15-17: 113 | [23] | Xu W L.Study on Fe-based biodegradable metallic coronary artery stents [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2011(徐文利. 铁基可降解心血管支架材料研究 [D]. 沈阳: 中国科学院金属研究所, 2011) | [24] | Gong M.Metal Corrosion Theory and Corrosion Control [M]. Beijing: Chemical Industry Press, 2009: 110(龚敏. 金属腐蚀理论及腐蚀控制 [M]. 北京: 化学工业出版社, 2009: 110) | [25] | Liu D X.Corrosion and Protection of Materials [M]. Xi'an: Northwest Industrial University Press, 2006: 83(刘道新. 材料的腐蚀与防护 [M]. 西安: 西北工业大学出版社, 2006: 83) | [26] | Zhu R Z.Corrosion Science of Metal [M]. Beijing: Metallurgical Industry Press, 1989: 132(朱日彰. 金属腐蚀学 [M]. 北京: 冶金工业出版社, 1989: 132) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|