Please wait a minute...
金属学报  2018, Vol. 54 Issue (11): 1503-1524    DOI: 10.11900/0412.1961.2018.00342
  组织与结构 本期目录 | 过刊浏览 |
高温合金中硼化物精细结构的高空间分辨电子显微学研究
马秀良(), 胡肖兵
中国科学院金属研究所 沈阳 110016
High-Resolution Transmission Electron Microscopic Study of Various Borides Precipitated in Superalloys
Xiuliang MA(), Xiaobing HU
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

马秀良, 胡肖兵. 高温合金中硼化物精细结构的高空间分辨电子显微学研究[J]. 金属学报, 2018, 54(11): 1503-1524.
Xiuliang MA, Xiaobing HU. High-Resolution Transmission Electron Microscopic Study of Various Borides Precipitated in Superalloys[J]. Acta Metall Sin, 2018, 54(11): 1503-1524.

全文: PDF(25525 KB)   HTML
摘要: 

为了提高高温服役性能,微量元素B被广泛加入到几乎所有的商用高温合金中。研究人员普遍认为B倾向于在晶界偏析,这种偏析有助于抑制高温下晶界的迁移。B在高温合金中有2种存在形式,一种是以固溶形式存在,另一种是以硼化物析出相的形式出现。B在高温合金中的固溶度非常低,故在高温服役过程中会析出多种硼化物,如M2B、M3B2M5B3。尽管这些硼化物在高温合金中普遍存在,但人们对于其认识仍停留在形貌特征等相对宏观的尺度上。而基于这些析出相精细结构的深入认识有助于人们优化材料设计及合理的阐述结构-性能关系。近年来,基于像差校正电子显微技术,本课题组利用多种先进的电子显微学方法在原子尺度上对以上3种硼化物进行了系统的微结构解析。本文概述了硼化物的研究现状,系统介绍了对硼化物结构与缺陷的新认识,并展望了相关研究趋势。

关键词 高温合金硼化物晶体学特征多面体堆垛透射电子显微术    
Abstract

Microelement B is widely added into almost all commercial superalloys because B contributes to strengthening grain boundaries at high temperature during service. Generally, B is present in two different forms. Besides the solute state in matrix, B tends to react with transition elements at high temperatures, giving rise to various borides including M2B, M3B2 and M5B3 phases. An accurate knowledge of the microstructural characterizations of these borides is of great importance for a better understanding of the structure-property relationship and designing materials with improved properties. By means of various advanced techniques based on the aberration-corrected transmission electron microscopy (TEM), microstructural features of above borides have been systematically investigated. Various defect features which were controversial in the past have been clarified. In this paper, after a brief review on the studies of borides, the atomic-scale information on the microstructural features has been presented. Finally, some prospects for future studies have been proposed.

Key wordssuperalloy    boride    crystallographic feature    polyhedral stacking    transmission electron microscopy
收稿日期: 2018-07-23     
ZTFLH:  TG146.1  
基金资助:国家重点基础研究发展计划项目Nos.2009CB623705和 2010CB631206,以及国家自然科学基金项目No.11327901
作者简介:

作者简介 马秀良,男,1964年生,研究员,博士

Structure Space group Lattice parameter Atom (Wyckoff Fractional coordinate
nm position) x y z
W2B I4/mcm a=0.56 W (8h) 0.169 0.669 0.000
C16 (No.140) c=0.47 B (4a) 0.000 0.000 0.250
V3B2 P4/mbm a=0.57 V (4h) 0.173 0.673 0.500
D5a (No.127) c=0.30 V (2a) 0.000 0.000 0.000
B (4g) 0.388 0.888 0.000
Cr5B3 I4/mcm a=0.55 Cr (16l) 0.166 0.666 0.150
D81 (No.140) c=1.06 Cr (4c) 0.000 0.000 0.000
B (8h) 0.625 0.125 0.000
B (4a) 0.000 0.000 0.250
表1  W2B、V3B2、Cr5B3晶体学信息[32]
图1  M3B2 (D5a)、M5B3 (D81)、M2B (C16)的单胞示意图[32]
Structure Space group Lattice parameter Atom (Wyckoff Fractional coordinate
nm position) x y z
Cr2B I4/mcm a=0.52 Cr (8h) 0.167 0.667 0.000
C16 (No.140) c=0.43 B (4a) 0.000 0.000 0.250
Cr2B Fddd a=1.47 Cr (16e) 0.917 0.000 0.000
Cb (No.70) b=0.74 Cr (16f) 0.000 0.333 0.000
c=0.43 B (16e) 0.373 0.000 0.000
Cr2B P6222 a=0.43 Cr (6f) 0.500 0.000 0.390
Ca (No.180) c=1.09 Cr (6j) 0.166 0.332 0.500
β=120° B (3a) 0.000 0.000 0.333
B (3c) 0.500 0.500 0.333
表2  C16-、Cb-和Ca-Cr2B的晶体结构信息[33]
图2  反四棱柱的体式图
图3  C16、Cb、Ca结构之间的联系,Cb结构在[011]Cb、[011?]Cb方向的结构投影,C16结构沿[001]C16方向的投影以及Ca结构在[110]Ca、[100]Ca、[010]Ca方向投影[33]
图4  Ca结构在[100]Ca方向的投影及其简化排列图,C16结构在[001]C16、[11?1]C16方向投影的简化排列图,Cb结构在[001]Cb、[011]Cb方向投影的简化排列图,一种新的N2有序结构的投影简化图[33]
图5  Cr2B多型体的结构衍生图(其中N代表堆垛层数)[33]
图6  M2B型硼化物在基体内(γ /γ’)的析出
图7  通过大角度倾转所获取的系列电子衍射图[31]
图8  通过大角度倾转所获取的系列电子衍射图[31]
图9  包含缺陷的M2B晶粒衍射特征,C16结构在[001]C16、[11?1]C16方向的衍射示意图,Cb结构在[001]Cb、[011]Cb方向的衍射示意图
图10  M2B相的晶内析出及其化学成分组成
图11  C16结构在(110)C16平面内与Cb结构在(100)Cb面内主要方向之间相对位置示意图,及[010]Cb、[11?3]C16晶带轴电子衍射示意图
图12  基体晶粒内析出M2B相的暗场像及EDPs[31]
图13  带有层错的C16结构沿[001]C16方向的HRTEM图[31]
图14  带有层错的C16结构沿[11?0]C16方向的HRTEM图[31]
图15  同一位置、不同倾转角下Cb结构的HRTEM图,及带有层错的Cb结构沿[001]Cb方向的HRTEM图[31]
图16  M2B内复杂共生行为[33]
图17  M2B多型体内的长周期结构[33]
图18  M3B2相的系列电子衍射谱
图19  晶粒内部析出的M3B2相的TEM明场像及EDX谱
图20  M3B2相在[001]、[100]、[110]取向的原子分辨率图像,有序结构模型,有序结构在[001]、[100]、[110]取向的投影结构[32]
图21  M3B2型硼化物中的化学有序[35]
图22  带有缺陷结构的M3B2相在[110]方向HRTEM像
图23  M3B2相中的多面体尺度共生[32]
图24  大角度倾转获取的M5B3相的系列电子衍射图
图25  M5B3相的晶内析出及其化学信息
图26  M5B3相在[001]、[100]、[110]取向的原子分辨率图像,有序结构模型,有序结构在[001]、[100]、[110]取向的投影结构[32]
图27  M5B3型硼化物中的化学有序[35]
图28  带有缺陷结构的M5B3相在[110]方向HRTEM像
图29  M5B3相中的多面体尺度共生[32]
图30  M3B2相与M5B3间的大尺度共生HAADF图像及复合衍射
[1] Floreen S, Davidson J.The effects of B and Zr on the creep and fatigue crack growth behavior of a Ni-base superalloy[J]. Metall. Trans., 1983, 14A: 895
[2] Xiao L, Chaturvedi M C, Chen D L.Effect of boron on the low-cycle fatigue behavior and deformation structure of INCONEL 718 at 650 ℃[J]. Metall. Mater. Trans., 2004, 35A: 3477
[3] Xiao L, Chaturvedi M C, Chen D L.Low-cycle fatigue behavior of INCONEL 718 superalloy with different concentrations of boron at room temperature[J]. Metall. Mater. Trans., 2005, 36A: 2671
[4] Xiao L, Chen D L, Chaturvedi M C.Effect of boron and carbon on thermomechanical fatigue of IN 718 superalloy: Part I. Deformation behavior[J]. Mater. Sci. Eng., 2006, A437: 157
[5] Mukherji D, R?sler J, Krüger M, et al.The effects of boron addition on the microstructure and mechanical properties of Co-Re-based high-temperature alloys[J]. Scr. Mater., 2012, 66: 60
[6] Mo W L, Hu X B, Lu S P, et al.Effects of boron on the microstructure, ductility-dip-cracking, and tensile properties for NiCrFe-7 weld metal[J]. J. Mater. Sci. Technol., 2015, 31: 1258
[7] Zhao Y S, Zhao Y S, Zhang J, et al.Effect of Hf and B on transverse and longitudinal creep of a Re-containing nickel-base bicrystal superalloy [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys[C]. New Jersey: John Wiley & Sons Inc., 2016: 683
[8] Kontis P, Yusof H A M, Pedrazzini S, et al. On the effect of boron on grain boundary character in a new polycrystalline superalloy[J]. Acta Mater., 2016, 103: 688
[9] Kontis P, Pedrazzini S, Gong Y L, et al.The effect of boron on oxide scale formation in a new polycrystalline superalloy[J]. Scr. Mater., 2017, 127: 156
[10] Antonov S, Huo J J, Feng Q, et al.The effect of Nb on grain boundary segregation of B in high refractory Ni-based superalloys[J]. Scr. Mater., 2017, 138: 35
[11] Shinagawa K, Omori T, Oikawa K, et al.Ductility enhancement by boron addition in Co-Al-W high-temperature alloys[J]. Scr. Mater., 2009, 61: 612
[12] Li N, Sun W R, Xu Y, et al.Effect of P and B on the creep behavior of alloy 718[J]. Mater. Lett., 2006, 60: 2232
[13] Ping D H, Gu Y F, Cui C Y, et al.Grain boundary segregation in a Ni-Fe-based (Alloy 718) superalloy[J]. Mater. Sci. Eng., 2007, A456: 99
[14] Zhou P J, Yu J J, Sun X F, et al.The role of boron on a conventional nickel-based superalloy[J]. Mater. Sci. Eng., 2008, A491: 159
[15] Tytko D, Choi P P, Kl?wer J, et al.Microstructural evolution of a Ni-based superalloy (617B) at 700 ℃ studied by electron microscopy and atom probe tomography[J]. Acta Mater., 2012, 60: 1731
[16] Alam T, Felfer P J, Chaturvedi M, et al.Segregation of B, P, and C in the Ni-based superalloy, inconel 718[J]. Metall. Mater. Trans., 2012, 43A: 2183
[17] Zhang H R, Ojo O A.Cr-rich nanosize precipitates in a standard heat-treated Inconel 738 superalloy[J]. Philos. Mag., 2010, 90: 765
[18] Sheng N C, Hu X B, Liu J D, et al.M3B2 and M5B3 formation in diffusion-affected zone during transient liquid phase bonding single-crystal superalloys[J]. Metall. Mater. Trans., 2015, 46A: 1670
[19] Du B N, Shi Z W, Yang J X, et al.M5B3 boride at the grain boundary of a nickel-based superalloy[J]. J. Mater. Sci. Technol., 2016, 32: 265
[20] Beattie H J.The crystal structure of an M3B2-type double boride[J]. Acta Cryst., 1958, 11: 607
[21] García-Bórquez A, Kesternich W.TEM-studies on the borides formed in an austenitic steel with 38 ppm boron[J]. Scr. Metall., 1985, 19: 57
[22] Goldfarb I, Kaplan W D, Ariely S, et al.Fault-induced polytypism in (Cr, Fe)2B[J]. Philos. Mag., 1995, 72A: 963
[23] Kaufman M J, Levit V I.Characterization of chromium boride precipitates in the commercial superalloy GTD 111 after long-term exposure[J]. Philos. Mag. Lett., 2008, 88: 259
[24] Bourgeois L, Dwyer C, Weyland M, et al.Structure and energetics of the coherent interface between the θ′ precipitate phase and aluminium in Al-Cu[J]. Acta Mater., 2011, 59: 7043
[25] Kishida K, Yokobayashi H, Inui H, et al.The crystal structure of the LPSO phase of the 14H-type in the Mg-Al-Gd alloy system[J]. Intermetallics, 2012, 31: 55
[26] Wenner S, Marioara C D, Ramasse Q M, et al.Atomic-resolution electron energy loss studies of precipitates in an Al-Mg-Si-Cu-Ag alloy[J]. Scr. Mater., 2014, 74: 92
[27] Rosalie J M, Dwyer C, Bourgeois L.On chemical order and interfacial segregation in γ' (AlAg2) precipitates[J]. Acta Mater., 2014, 69: 224
[28] Egami M, Abe E.Structure of a novel Mg-rich complex compound in Mg-Co-Y ternary alloys[J]. Scr. Mater., 2015, 98: 64
[29] Jin Q Q, Shao X H, Hu X B, et al.New polytypes of long-period stacking ordered structures in a near-equilibrium Mg97Zn1Y2 alloy[J]. Philos. Mag. Lett., 2017, 97: 180
[30] Jin Q Q, Shao X H, Hu X B, et al.New polytypes of LPSO structures in an Mg-Co-Y alloy[J]. Philos. Mag., 2017, 97: 1
[31] Hu X B, Zhu Y L, Ma X L.Crystallographic account of nano-scaled intergrowth of M2B-type borides in nickel-based superalloys[J]. Acta Mater., 2014, 68: 70
[32] Hu X B, Zhu Y L, Sheng N C, et al.The Wyckoff positional order and polyhedral intergrowth in the M3B2- and M5B3-type boride precipitated in the Ni-based superalloys[J]. Sci. Rep., 2014, 4: 7367
[33] Hu X B, Zhu Y L, Shao X H, et al.Atomic configurations of various kinds of structural intergrowth in the polytypic M2B-type boride precipitated in the Ni-based superalloy[J]. Acta Mater., 2015, 100: 64
[34] Hu X B, Zhou L Z, Hou J S, et al.Interfacial precipitation of the M5B3-type boride in Ni-based superalloys[J]. Philos. Mag. Lett., 2016, 96: 273
[35] Hu X B, Niu H Y, Ma X L, et al.Atomic-scale observation and analysis of chemical ordering in M3B2 and M5B3 borides[J]. Acta Mater., 2018, 149: 274
[36] Hou J S, Guo J T, Yang G X, et al.The microstructural instability of a hot corrosion resistant superalloy during long-term exposure[J]. Mater. Sci. Eng., 2008, A498: 349
[37] Sheng N C, Liu J D, Jin T, et al.Wide gap TLP bonding a single-crystal superalloy: Evolution of the L/S interface morphology and formation of the isolated grain boundaries[J]. Metall. Mater. Trans., 2013, 44A: 1793
[38] Ye H Q, Kuo K H.High-resolution images of planar faults and domain structures in the σ-phase of an iron-base superalloy[J]. Philos. Mag., 1984, 50A: 117
[39] Ye H Q, Li D X, Kuo K H.Structure of the H phase determined by high-resolution electron microscopy[J]. Acta Crystallogr., 1984, 40B: 461
[40] Ye H Q, Li D X, Kuo K H.Domain structures of tetrahedrally close-packed phases with juxtaposed pentagonal antiprisms. I. Structure description and hrem images of the C14 Laves and μ phases[J]. Philos. Mag., 1985, 51A: 829
[41] Ye H Q, Wang D N, Kuo K H.Domain structures of tetrahedrally close-packed phases with juxtaposed pentagonal antiprisms II. Domain boundary structures of the C14 Laves phase[J]. Philos. Mag., 1985, 51A: 839
[42] Ye H Q, Li D X, Guo K X.Topologically close-packed phases in superalloys: New phases and domain structures[J]. Acta Metall. Sin., 1986, 22: 1(叶恒强, 李斗星, 郭可信. 高温合金中的拓扑密堆相: 新相及畴结构 [J]. 金属学报, 1986, 22: 1)
[43] Dudzinski W, Morniroli J P, Gantois M.Stacking faults in chromium, iron and vanadium mixed carbides of the type M7C3[J]. J. Mater. Sci., 1980, 15: 1387
[44] Morniroli J P, Bauer-Grosse E, Gantois M.Crystalline defects in M7C3 carbides[J]. Philos. Mag., 1983, 48A: 311
[45] Morniroli J P, Khachfi M, Courtois A, et al.Observations of non-periodic and periodic defect structures in M7C3 carbides[J]. Philos. Mag., 1987, 56A: 93
[46] De Graef M, L?fvander J P A, Levi C G. The structure of complex monoborides in γ-TiAl alloys with Ta and B additions[J]. Acta Metall. Mater., 1991, 39: 2381
[47] De Graef M, L?fvander J P A, McCullough C, et al. The evolution of metastable Bf borides in a Ti-Al-B alloy[J]. Acta Metall. Mater., 1992, 40: 3395
[48] Lundstrom T.Structure, defects and properties of some refractory borides[J]. Pure Appl. Chem., 1985, 57: 1383
[49] Gingl F, Selvam P, Yvon K.Structure refinement of Mg2Cu and a comparison of the Mg2Cu, Mg2Ni and Al2Cu structure types[J]. Acta Crystallogr., 1993, 49B: 201
[50] Zhang H R, Ojo O A.TEM analysis of Cr-Mo-W-B phase in a DS nickel based superalloy[J]. J. Mater. Sci., 2008, 43: 6024
[51] Zheng S J, Wang Y J, Zhang B, et al.Identification of MnCr2O4 nano-octahedron in catalysing pitting corrosion of austenitic stainless steels[J]. Acta Mater., 2010, 58: 5070
[52] Zhou Y T, Zhang B, Zheng S J, et al.Atomic-scale decoration for improving the pitting corrosion resistance of austenitic stainless steels[J]. Sci. Rep., 2014, 4: 3604
[53] Zhang B, Wang J, Wu B, et al.Unmasking chloride attack on the passive film of metals[J]. Nat. Commun., 2018, 9: 2559
[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[6] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[7] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[8] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[9] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[10] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[11] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[12] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[13] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[14] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[15] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.