|
|
MRI磁兼容合金研究 |
任伊宾1( ), 李俊1,2, 王青川1, 杨柯1 |
1 中国科学院金属研究所 沈阳 110016 2 中国科学技术大学材料科学与工程学院 沈阳 110016 |
|
A Review: Research on MR-Compatible Alloys in MRI |
Yibin REN1( ), Jun LI1,2, Qingchuan WANG1, Ke YANG1 |
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
任伊宾, 李俊, 王青川, 杨柯. MRI磁兼容合金研究[J]. 金属学报, 2017, 53(10): 1323-1330.
Yibin REN,
Jun LI,
Qingchuan WANG,
Ke YANG.
A Review: Research on MR-Compatible Alloys in MRI[J]. Acta Metall Sin, 2017, 53(10): 1323-1330.
[1] | Wang W D.Research on magnetic resonance imaging guided bone biopsy robot and key technologies [D]. Xi'an: Northwestern Polytechnical University, 2014(王文东. 磁共振图像向导的骨活检手术机器人关键技术研究 [D]. 西安: 西北工业大学, 2014) | [2] | Schenck J F.Safety of strong, static magnetic fields[J]. J. Magn. Reson. Imaging, 2000, 12: 2 | [3] | Tian J G, Liu M L, Xia Z F, et al.Safety factors of magnetic resonance imaging[J]. Chin. J. Magn. Reson., 2000, 17: 505(田建广, 刘买利, 夏照帆等. 磁共振成像的安全性[J]. 波谱学杂志, 2000, 17: 505) | [4] | Liu Y, Long D, Qian X M.Safety factors of magnetic resonance imaging and cardiac metal implants[J]. Chin. J. Misdiagn., 2007, 7: 7234(刘瑜, 龙丹, 钱晓明. 磁共振成像的安全性与心脏金属移植物[J]. 中国误诊学杂志, 2007, 7: 7234) | [5] | Luo M M.Research on the issues of fetal magnetic resonance safety [D]. Guangzhou: Southern Medical University, 2015(罗敏敏. 胎儿磁共振安全问题研究 [D]. 广州: 南方医科大学, 2015) | [6] | Syed M A, Mohiaddin R H.Magnetic Resonance Imaging of Congenital Heart Disease[M]. London: Springer, 2012: 39 | [7] | Schenck J F.The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds[J]. Med. Phys., 1996, 23: 815 | [8] | Lee M J, Kim S, Lee S A, et al.Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT[J]. Radiographics, 2007, 27: 791 | [9] | Nitatori T, Hanaoka H, Hachiya J, et al.MRI artifacts of metallic stents derived from imaging sequencing and the ferromagnetic nature of materials[J]. Radiat. Med., 1999, 17: 329 | [10] | Bernstein M A, Huston J, Ward H A.Imaging artifacts at 3.0 T[J]. J. Magn. Reson. Imaging, 2006, 24: 735 | [11] | Bagheri M H, Hosseini M M, Emami M J, et al.Metallic artifact in MRI after removal of orthopedic implants[J]. Eur. J. Radiol., 2012, 81: 584 | [12] | Zhou F Y, Qiu K J, Li H F, et al.Screening on binary Zr-1X (X= Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi) alloys with good in vitro cytocompatibility and magnetic resonance imaging compatibility[J]. Acta Biomater., 2013, 9: 9578 | [13] | Zhou D B, Wang S P, Wang S G, et al.Bulk metallic glasses: MRI compatibility and its correlation with magnetic susceptibility[J]. J. Mater. Sci. Technol., 2016, 32: 496 | [14] | Zhou F Y.Microstructure and property of novel Zr-based alloys for biomedical application [D]. Harbin: Harbin Harbin Engeering University, 2014(周飞宇. 新型医用锆基合金的组织结构与性能研究 [D]. 哈尔滨: 哈尔滨工程大学, 2014) | [15] | Salda?a L, Méndez-Vilas A, Jiang L, et al.In vitro biocompatibility of an ultrafine grained zirconium[J]. Biomaterials, 2007, 28: 4343 | [16] | Kondo R, Nomura N, Suyalatu, et al. Microstructure and mechanical properties of as-cast Zr-Nb alloys[J]. Acta Biomater., 2011, 7: 4278 | [17] | Kondo R, Shimizu R, Nomura N, et al.Effect of cold rolling on the magnetic susceptibility of Zr-14Nb alloy[J]. Acta Biomater., 2013, 9: 5795 | [18] | Suyalatu, Nomura N, Oya K, et al. Microstructure and magnetic susceptibility of as-cast Zr-Mo alloys[J]. Acta Biomater., 2010, 6: 1033 | [19] | Suyalatu, Kondo R, Tsutsumi Y, et al. Effects of phase constitution on magnetic susceptibility and mechanical properties of Zr-rich Zr-Mo alloys[J]. Acta Biomater., 2011, 7: 4259 | [20] | Imai H, Tanaka Y, Nomura N, et al.Magnetic susceptibility, artifact volume in MRI, and tensile properties of swaged Zr-Ag composites for biomedical applications[J]. J. Mech. Behav. Biomed. Mater., 2017, 66: 152 | [21] | Zhou D B, Wang S G, Wang S P, et al.MRI compatibility of several early transition metal based alloys and its influencing factors[J]. J. Biomed. Mater. Res. Part B, 2017, doi: 10.1002/jbm.b.33832 | [22] | O'Brien B, Stinson J, Carroll W. Development of a new niobium-based alloy for vascular stent applications[J]. J. Mech. Behav. Biomed. Mater., 2008, 1: 303 | [23] | O'Brien B J, Stinson J S, Boismier D A, et al. Characterization of an NbTaWZr alloy designed for magnetic resonance angiography compatible stents[J]. Biomaterials, 2008, 29: 4540 | [24] | Li H Z, Xu J.MRI compatible Nb-Ta-Zr alloys used for vascular stents: Optimization for mechanical properties[J]. J. Mech. Behav. Biomed. Mater., 2014, 32: 166 | [25] | Li H Z, Zhao X, Xu J.MRI-compatible Nb-60Ta-2Zr alloy for vascular stents: Electrochemical corrosion behavior in simulated plasma solution[J]. Mater. Sci. Eng., 2015, C56: 205 | [26] | Li X M, Li H Z, Wang S P, et al.MRI-compatible Nb-60Ta-2Zr alloy used for vascular stents: Haemocompatibility and its correlation with protein adsorption[J]. Mater. Sci. Eng., 2014, C42: 385 | [27] | van Dijk L C, van Holten J, van Dijk B P, et al. A precious metal alloy for construction of MR imaging-compatible balloon-expandable vascular stents[J]. Radiology, 2001, 219: 284 | [28] | Wataha J C, Shor K.Palladium alloys for biomedical devices[J]. Expert Rev. Med. Devices, 2010, 7: 489 | [29] | Liu Y B, Hu D Y, Xia L M, et al.Research about interventional magnetic resonance imaging[J]. Radiol. Pract., 2003, 18: 611(刘于宝, 胡道予, 夏黎明等. 介入性磁共振器械的研究[J]. 放射学实践, 2003, 18: 611) | [30] | Liu P, Ren F Z, Jia S G.Copper Alloy and Its Application [M]. Beijing: Chemical Industry Press, 2007: 1(刘平, 任凤章, 贾淑果. 铜合金及其应用 [M]. 北京: 化学工业出版社, 2007: 1) | [31] | Spuentrup E, Ruebben A, Stuber M, et al.Metallic renal artery MR imaging stent: Artifact-free lumen visualization with projection and standard renal MR angiography[J]. Radiology, 2003, 227: 897 | [32] | Li J, Ren Y B, Ibrahim M, et al.MR-compatible silicon brass for magnetic resonance guided biopsy application[J]. Mater. Lett., 2017, 202: 162 | [33] | Imai H, Tanaka Y, Nomura N, et al.Three-dimensional quantification of susceptibility artifacts from various metals in magnetic resonance images[J]. Acta Biomater., 2013, 9: 8433 | [34] | Buecker A, Spuentrup E, Ruebben A, et al.Artifact-free in-stent lumen visualization by standard magnetic resonance angiography using a new metallic magnetic resonance imaging stent[J]. Circulation, 2002, 105: 1772 | [35] | Spuentrup E, Ruebben A, Mahnken A, et al.Artifact-free coronary magnetic resonance angiography and coronary vessel wall imaging in the presence of a new, metallic, coronary magnetic resonance imaging stent[J]. Circulation, 2005, 111: 1019 | [36] | Astary G W, Peprah M K, Fisher C R, et al.MR measurement of alloy magnetic susceptibility: Towards developing tissue-susceptibility matched metals[J]. J. Magn. Reson., 2013, 233: 49 | [37] | Weiss C R, Nour S G, Lewin J S.MR-guided biopsy: A review of current techniques and applications[J]. J. Magn. Reson. Imaging, 2008, 27: 311 | [38] | Dogan B E, Le-Petross C H, Stafford J R, et al. MRI-guided vacuum-assisted breast biopsy performed at 3 T with a 9-gauge needle: preliminary experience[J]. Am. J. Roentgenol., 2012, 199: W651 | [39] | Shafiei F, Honda E, Takahashi H, et al.Artifacts from dental casting alloys in magnetic resonance imaging[J]. J. Dent. Res., 2003, 82: 602 | [40] | Taniyama T, Sohmura T, Etoh T, et al.Metal artifacts in MRI from non-magnetic dental alloy and its FEM analysis[J]. Dent. Mater. J., 2010, 29: 297 | [41] | Silvestri Z, Davis R S, Genevès G, et al.Volume magnetic susceptibility of gold-platinum alloys: Possible materials to make mass standards for the watt balance experiment[J]. Metrologia, 2003, 40: 172 | [42] | Uyama E, Inui S, Hamada K, et al.Magnetic susceptibility and hardness of Au-xPt-yNb alloys for biomedical applications[J]. Acta Biomater., 2013, 9: 8449 | [43] | Li Q Y, Zhang S.Nutritionist Handbook [M]. Beijing: People's Military Medical Press, 2009: 46(李清亚, 张松. 营养师手册 [M]. 北京: 人民军医出版社, 2009: 46) | [44] | Bowen P K, Drelich J, Goldman J.Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents[J]. Adv. Mater., 2013, 25: 2577 | [45] | Vojtěch D, Kubásek J, ?erák J, et al.Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation[J]. Acta Biomater., 2011, 7: 3515 | [46] | Ren Y B, Li J, Dong J H, et al.Magnetic compatibility zinc alloy and application thereof [P]. Chin. Pat., 20150542175.X, 2017(任伊宾, 李俊, 东家慧等. 一种磁兼容锌合金及其应用 [P]. 中国专利, 20150542175.X, 2017) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|