Please wait a minute...
金属学报  2017, Vol. 53 Issue (10): 1181-1196    DOI: 10.11900/0412.1961.2017.00259
  研究论文 本期目录 | 过刊浏览 |
可降解镁基金属的生物相容性研究进展
赵颖1(), 曾利兰1, 梁涛1,2
1 中国科学院深圳先进技术研究院 深圳 518055
2 中国科学院大学 北京 100049
Development in Biocompatibility of Biodegradable Magnesium-Based Metals
Ying ZHAO1(), Lilan ZENG1, Tao LIANG1,2
1 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
引用本文:

赵颖, 曾利兰, 梁涛. 可降解镁基金属的生物相容性研究进展[J]. 金属学报, 2017, 53(10): 1181-1196.
Ying ZHAO, Lilan ZENG, Tao LIANG. Development in Biocompatibility of Biodegradable Magnesium-Based Metals[J]. Acta Metall Sin, 2017, 53(10): 1181-1196.

全文: PDF(4307 KB)   HTML
摘要: 

镁基金属以其良好的生物相容性、与骨组织匹配的力学性能以及在人体内可降解吸收等特点,成为极具临床应用前景的新型生物可降解植入材料,未来有望替代传统的医用金属材料(如不锈钢、钛合金等)应用于骨科内植入器件、心血管支架等领域。本文综合评述了近年来国内外可降解镁基金属的生物相容性研究进展,从合金化和表面改性2方面对镁基金属的体内外细胞相容性、血液相容性和组织相容性等相关研究进行了介绍,并对镁基金属未来在临床上的应用和发展趋势进行了展望。

关键词 镁基金属降解细胞相容性血液相容性组织相容性    
Abstract

Magnesium-based metals become novel biodegradable implanting material and present good clinical application prospect due to their good biocompatibility, mechanical properties matching with bone tissue as well as absorbable and biodegradable properties in human body. They are expected to replace traditional medical metals such as stainless steel and titanium alloy in the area of orthopaedics and cardiovascular stent. In this paper, the current research status about the biocompatibility of magnesium based metals both at home and abroad in recent years has been reviewed. In vitro and in vivo cytocompatibility, hemocompatibility and histocompatibility have been mentioned from aspects of alloying and surface modification. The clinical application and development tendencies for magnesium based metals are also proposed.

Key wordsmagnesium-based metal    degradation    cytocompatibility    hemocompatibility    histocompatibility
收稿日期: 2017-06-30     
ZTFLH:  R318.08  
基金资助:国家自然科学基金项目Nos.81572113和51501218,广东省自然科学基金项目No.2014A030310129,深圳基础研究项目Nos.JCYJ20160229195249481、JCYJ20160429185449249和JCYJ20160608153641020,深港创新圈项目No.SGLH-20150213143207910及深圳市孔雀团队项目No.110811003586331
作者简介:

作者简介 赵 颖,女,1975年生,研究员,博士

Alloy Cell viability / % Hemolysis rate / %
L-929 Human primitive MC3T3-E1 HUVECs MG63
osteoblasts
Rapid solidified Mg-3Ca[9] >90
As-cast Mg-5Zn-1Ca[10] 100
As-extruded Mg-1Ca[11] >90
As-cast Mg-0.5Sr[14] >95
As-cast Mg-1Sr[19] 96.3 2.54
As-rolled pure Mg[19] 98.3 7.13
Backward extruded Mg-1Zn-0.8Sr[22] >90
As-cast Mg-1.38Si-0.5Sr-0.6Ca[23] >100
As-extruded Mg-6%Zn[29] >80
As-cast Mg-1Ca-0.5Sr-6Zn[30] >80
Sub-rapid solidified Mg-1Sn[36] >100
Sub-rapid solidified Mg-3Sn[36] >100
As-cast Mg-0.03Cu[45] >100 125
Mg-Nd-Zn-Zr[49] >75
表1  合金化对可降解镁基金属的细胞存活率和溶血率的影响[9-11,14,19,22,23,29,30,36,45,49]
Material In vitro In vivo
Corrosion Hemolysis Cytocompatibility Size Implant Corrosion rate New bone
rate rate mm duration mma-1 formation
mma-1 % (Volume loss) (Yes/No)
JDBM[55] 0.337 52.0
MgF2-coating JDBM[55] 0.253 10.1
MgF2-coated Mg-0.8Ca[56] ?2.5×25 3 weeks (8.54%) Yes
6 weeks (25.33%) Yes
LAE442[57] ?3×5 12 weeks 0.31±0.06
MgF2-coated LAE442[57] ?3×5 12 weeks 0.13±0.03
Mg-3Zn-0.8Zr[58] ?3×10 3 months (37.02%) Yes
MgF2-coated Mg-3Zn-0.8Zr[58] ?3×10 3 months (23.85%) Yes
AZ31B[59] ?2×7 3 months Yes
F-AZ31B[59] ?2×7 3 months Yes
Mg-Zn-Zr[60] 0.92 ?3.5×15 6 months 0.861±0.021 Yes
MgF2-coated Mg-Zn-Zr[60] 0.45 ?3.5×15 6 months 0.516±0.015 Yes
AZ31[61] 1.94
FAZ31[61] 1.18
Mg[62] ?4×10 4 weeks Yes
HA/MgF2-coated Mg[62] ?4×10 4 weeks Yes
表2  氟化处理对镁基金属体内外降解性能和生物相容性的影响[55-62]
Material In vitro In vivo
Hemolysis Cytocompatibility Size Implant site Implant Weight New bone
rate mm duration loss formation
% % (Yes/No)
AZ31[64] ?1×5 Rat femur 12 weeks 33 Yes
β-TCP Coating AZ31[64] ?1×5 Rat femur 12 weeks 17 Yes
JDBM [65] >70% 10×10×1 Rat subcutaneous 40 d >20
HT3#-JDBM[65] <6% 10×10×1 Rat subcutaneous 40 d <10
HT2h-Mg[66] ?2.5×10 Rabbit femur 8 weeks Yes
HT24h-Mg[66] ?2.5×10 Rabbit femur 8 weeks Yes
表3  水热处理对镁基金属体内外降解性能和生物相容性的影响[64-66]
Material Electrolyte MAO Cytocompatibility Hemolysis rate
parameter MG63 L-929 BMSCs MC3T3-E1
Mg-1Ca[67]
MAO-Mg-1Ca[67] Na2SiO3, NaOH 400 V, 10 min
ZK60[68] Na2SiO39H2O, 450 V, 5 min 6.79%±2.88%
MAO-ZK60[68] KOH, KF 0.39%±0.44%
ZK60[69] 28.78%
MAO-ZK60[69] Na2SiO39H2O, 370 V, 5 min 1.04%
KOH,KF2H2O
Mg-1.0Zn-1.0Ca[70] 24.58%±1.82%
MAO-Mg-1.0Zn-1.0Ca[70] NaOH, Na4SiO4, 400 V, 5 min 2.25%±0.23%
NaF
WE42[71] 50.37%±0.42%
MAO/PLLA-WE42[71] NaOH, Na2SiO3 40 min 1.79%±0.67%
AZ31[72] 93.290%±0.782%
MAO/PLLA-AZ31[72] Na2SiO39H2O, 50 mAcm-2, 0.806%±0.771%
NaOH, NaF 15 min
AZ31[73]
PEO/PCL-AZ31[73] Na2SiO39H2O,
KOH, KF2H2O 0.4 mAcm-2, 30 min
表4  微弧氧化处理医用镁基金属体外生物相容性[67-73]
图1  MgZnYNd、MgZnYNd-P、MgZnYNd-A-P、MgZnYNd-B-A-P样品与人脐静脉内皮细胞(EA.hy926)和鼠血管平滑肌细胞(VSMC)细胞共培养24 h后的NO释放量[79]
图2  纯Mg、2%-Phe-PEA-Mg、4%-Phe-PEA-Mg和2%PLGA-Mg样品与VSMC细胞间接和直接培养24 h后的NO释放量[83]
图3  MgZnYNd、 PLGA-coated MgZnYNd和 6-Arg-6 PEUU-coated MgZnYNd 的溶血率及Arg-PEUU-coated MgZnYNd、PLGA-coated和bare MgZnYNd与人脐静脉内皮细胞(HUVEC)细胞共培养24 h后的NO释放量[84]
图4  在表面制备了缺钙羟基磷灰石(Ca-def HA)涂层及无涂层的Mg-Zn-Ca合金植入8、12、18和24周的Micro-CT 2D重建结果,以及植入18和24周后的组织学结果(HE染色)[94]
图5  纯Mg、MgCP30和MgCP60 样品术后0、4、8和12周的Micro-CT结果及组织学结果[101]
图6  未离子注入AZ91和等离子注入Al和O的AZ91在手术后不同时间点的Micro-CT结果和骨量变化,术后2个月Micro-CT 3D重建结果及术后8周硬组织吉姆萨染色结果[109]
[1] Chen Y J, Xu Z G, Smith C, et al.Recent advances on the development of magnesium alloys for biodegradable implants[J]. Acta Biomater., 2014, 10: 4561
[2] Ding Y F, Wen C E, Hodgson P, et al.Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: A review[J]. J. Mater. Chem., 2014, 2B: 1912
[3] Agarwal S, Curtin J, Duffy B, et al.Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications[J]. Mater. Sci. Eng., 2016, C68: 948
[4] Li X, Liu X M, Wu S L, et al.Design of magnesium alloys with controllable degradation for biomedical implants: From bulk to surface[J]. Acta Biomater., 2016, 45: 2
[5] Kim W C, Kim J G, Lee J Y, et al.Influence of Ca on the corrosion properties of magnesium for biomaterials[J]. Mater. Lett., 2008, 62: 4146
[6] Wan Y Z, Xiong G Y, Luo H L, et al.Preparation and characterization of a new biomedical magnesium-calcium alloy[J]. Mater. Des., 2008, 29: 2034
[7] Rad H R B, Idris M H, Kadir M R A, et al. Microstructure analysis and corrosion behavior of biodegradable Mg-Ca implant alloys[J]. Mater. Des., 2012, 33: 88
[8] Li Y C, Hodgson P D, Wen C E.The effects of calcium and yttrium additions on the microstructure, mechanical properties and biocompatibility of biodegradable magnesium alloys[J]. J. Mater. Sci., 2011, 46: 365
[9] Gu X N, Li X L, Zhou W R, et al.Microstructure, biocorrosion and cytotoxicity evaluations of rapid solidified Mg-3Ca alloy ribbons as a biodegradable material[J]. Biomed. Mater., 2010, 5: 035013
[10] Yin P, Li N F, Lei T, et al.Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Ca alloys[J]. J. Mater. Sci. Mater. Med., 2013, 24: 1365
[11] Li Z J, Gu X N, Lou S Q, et al.The development of binary Mg-Ca alloys for use as biodegradable materials within bone[J]. Biomaterials, 2008, 29: 1329
[12] Erdmann N, Angrisani N, Reifenrath J, et al.Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: A comparative in vivo study in rabbits[J]. Acta Biomater., 2011, 7: 1421
[13] Krause A, von der H?h N, Bormann D, et al. Degradation behaviour and mechanical properties of magnesium implants in rabbit tibiae[J]. J. Mater. Sci., 2010, 45: 624
[14] Bornapour M, Muja N, Shum-Tim D, et al.Biocompatibility and biodegradability of Mg-Sr alloys: The formation of Sr-substituted hydroxyapatite[J]. Acta Biomater., 2013, 9: 5319
[15] Brar H S, Wong J, Manuel M V.Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials[J]. J. Mech. Behav. Biomed. Mater., 2012, 7: 87
[16] Seeman E, Vellas B, Benhamou C, et al.Strontium ranelate reduces the risk of vertebral and nonvertebral fractures in women eighty years of age and older[J]. J. Bone Miner. Res., 2006, 21: 1113
[17] Meunier P J, Roux C, Seeman E, et al.The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis[J]. New Engl. J. Med., 2004, 350: 459
[18] Fan Y, Wu G H, Zhai C Q. Effect of strontium on mechanical properties and corrosion resistance of AZ91D [J]. Mater. Sci. Forum, 2007, 546-549: 567
[19] Gu X N, Xie X H, Li N, et al.In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal[J]. Acta Biomater., 2012, 8: 2360
[20] Guan R G, Cipriano A F, Zhao Z Y, et al.Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications—Alloy processing, microstructure, mechanical properties, and biodegradation[J]. Mater. Sci. Eng., 2013, C33: 3661.
[21] Tie D, Guan R G, Liu H N, et al.An in vivo study on the metabolism and osteogenic activity of bioabsorbable Mg-1Sr alloy[J]. Acta Biomater., 2016, 29: 455
[22] Li H, Peng Q M, Li X J, et al.Microstructures, mechanical and cytocompatibility of degradable Mg-Zn based orthopedic biomaterials[J]. Mater. Des., 2014, 58: 43
[23] Wang W D, Han J J, Yang X, et al.Novel biocompatible magnesium alloys design with nutrient alloying elements Si, Ca and Sr: Structure and properties characterization[J]. Mater. Sci. Eng., 2016, B214: 26
[24] Wang C, Lin K L, Chang J, et al.Osteogenesis and angiogenesis induced by porous β-CaSiO3/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways[J]. Biomaterials, 2013, 34: 64
[25] Jin G D, Qin H, Cao H L, et al.Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium[J]. Biomaterials, 2014, 35: 7699
[26] Cai S H, Lei T, Li N F, et al.Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys[J]. Mater. Sci. Eng., 2012, C32: 2570
[27] Yu S, Wang X H, Chen Y G, et al.In vitro and in vivo evaluation of effects of Mg-6Zn alloy on tight junction of intestinal epithelial cell[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 3760
[28] Zhang S Y, Zheng Y, Zhang L M, et al.In vitro and in vivo corrosion and histocompatibility of pure Mg and a Mg-6Zn alloy as urinary implants in rat model[J]. Mater. Sci. Eng., 2016, C68: 414
[29] Yan Y, Cao H W, Kang Y J, et al.Effects of Zn concentration and heat treatment on the microstructure, mechanical properties and corrosion behavior of as-extruded Mg-Zn alloys produced by powder metallurgy[J]. J. Alloys Compd., 2017, 693: 1277
[30] Yu W L, Chen D Y, Ding Z Y, et al.Synergistic effect of a biodegradable Mg-Zn alloy on osteogenic activity and anti-biofilm ability: An in vitro and in vivo study[J]. RSC Adv., 2016, 6: 45219
[31] He G P, Wu Y H, Zhang Y, et al.Addition of Zn to the ternary Mg-Ca-Sr alloys significantly improves their antibacterial properties[J]. J. Mater. Chem., 2015, 3B: 6676
[32] Xia Y H, Zhang B P, Wang Y, et al.In-vitro cytotoxicity and in-vivo biocompatibility of as-extruded Mg-4.0Zn-0.2Ca alloy[J]. Mater. Sci. Eng., 2012, C32: 665
[33] Qu Y, Kang M Y, Dong R P, et al.Evaluation of a new Mg-Zn-Ca-Y alloy for biomedical application[J]. J. Mater. Sci. Mater. Med., 2015, 26: 16
[34] Chen C J, Chen C W, Wu M M, et al.Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water[J]. Br. J. Cancer, 1992, 66: 888
[35] Hou L D, Li Z, Zhao H, et al.Microstructure, mechanical properties, corrosion behavior and biocompatibility of as-extruded biodegradable Mg-3Sn-1Zn-0.5Mn alloy[J], J. Mater. Sci. Technol., 2016, 32: 874
[36] Zhao C Y, Pan F S, Zhao S, et al.Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg-Sn implant alloys prepared by sub-rapid solidification[J]. Mater. Sci. Eng., 2015, C54: 245
[37] Zhao C Y, Pan F S, Zhao S, et al.Preparation and characterization of as-extruded Mg-Sn alloys for orthopedic applications[J]. Mater. Des., 2015, 70: 60
[38] Harris E D.A requirement for copper in angiogenesis[J]. Nutr. Rev., 2004, 62: 60
[39] Harris E D.Basic and clinical aspects of copper[J]. Crit. Rev. Clin. Lab. Sci., 2003, 40: 547
[40] Wilson T, Katz J M, Gray D H.Inhibition of active bone resorption by copper[J]. Calcif. Tissue Int., 1981, 33: 35
[41] Gérard C, Bordeleau L J, Barralet J, et al.The stimulation of angiogenesis and collagen deposition by copper[J]. Biomaterials, 2010, 31: 824
[42] Strause L, Saltman P, Glowacki J.The effect of deficiencies of manganese and copper on osteoinduction and on resorption of bone particles in rats[J]. Calcif. Tissue Int., 1987, 41: 145
[43] Sen C K, Khanna S, Venojarvi M, et al.Copper-induced vascular endothelial growth factor expression and wound healing[J]. Am. J. Physiol. Heart Circ. Physiol., 2002, 282: H1821
[44] Hu G F.Copper stimulates proliferation of human endothelial cells under culture[J]. J. Cell. Biochem., 1998, 69: 326
[45] Liu C, Fu X K, Pan H B, et al.Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects[J]. Sci. Rep., 2016, 6: 27374
[46] Li Y, Liu L N, Wan P, et al.Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations[J]. Biomaterials, 2016, 106: 250
[47] Zhang X B, Yuan G Y, Mao L, et al.Biocorrosion properties of as-extruded Mg-Nd-Zn-Zr alloy compared with commercial AZ31 and WE43 alloys[J]. Mater. Lett., 2012, 66: 209
[48] Zong Y, Yuan G Y, Zhang X B, et al.Comparison of biodegradable behaviors of AZ31 and Mg-Nd-Zn-Zr alloys in Hank's physiological solution[J]. Mater. Sci. Eng., 2012, B177: 395
[49] Wang Y P, He Y H, Zhu Z J, et al.In vitro degradation and biocompatibility of Mg-Nd-Zn-Zr alloy[J]. Chin. Sci. Bull., 2012, 57: 2163
[50] Wang Y P, Zhu Z J, He Y H, et al.In vivo degradation behavior and biocompatibility of Mg-Nd-Zn-Zr alloy at early stage[J]. Int. J. Mol. Med., 2012, 29: 178
[51] Wang Y, Ouyang Y, Peng X, et al.Effects and degradable Mg-Nd-Zn-Zr alloy on osteoblastic cell function[J]. Int. J. Immunopathol. Pharmacol., 2012, 25: 597
[52] Liao Y, Ouyang Y M, Niu J L, et al.In vitro response of chondrocytes to a biodegradable Mg-Nd-Zn-Zr alloy[J]. Mater. Lett., 2012, 83: 206
[53] Wang Y P, Ouyang Y M, He Y H, et al.Biocompatibility of Mg-Nd-Zn-Zr alloy with rabbit blood[J]. Chin. Sci. Bull., 2013, 58: 2903
[54] Zheng Y F, Qin L, Yang K, et al.Biodegradable Metals [M]. Beijing: Science Press, 2016: 143(郑玉峰, 秦岭, 杨柯等. 可降解金属 [M]. 北京: 科学出版社, 2016: 143)
[55] Mao L, Yuan G Y, Niu J L, et al.In vitro degradation behavior and biocompatibility of Mg-Nd-Zn-Zr alloy by hydrofluoric acid treatment[J]. Mater. Sci. Eng., 2013, C33: 242
[56] Thomann M, Krause C, Angrisani N, et al.Influence of a magnesium-fluoride coating of magnesium-based implants (MgCa0.8) on degradation in a rabbit model[J]. J. Biomed. Mater. Res., 2010, 93A: 1609
[57] Witte F, Fischer J, Nellesen J, et al.In vivo corrosion and corrosion protection of magnesium alloy LAE442[J]. Acta Biomater., 2010, 6: 1792
[58] Sun J E, Wang J B, Jiang H F, et al.In vivo comparative property study of the bioactivity of coated Mg-3Zn-0.8Zr alloy[J]. Mater. Sci. Eng., 2013, C33: 3263
[59] Sun W, Zhang G D, Tan L L, et al.The fluoride coated AZ31B magnesium alloy improves corrosion resistance and stimulates bone formation in rabbit model[J]. Mater. Sci. Eng., 2016, C63: 506
[60] Li Z, Sun S Z, Chen M F, et al.In vitro and in vivo corrosion, mechanical properties and biocompatibility evaluation of MgF2-coated Mg-Zn-Zr alloy as cancellous screws[J]. Mater. Sci. Eng., 2017, C75: 1268
[61] Yu W L, Zhao H K, Ding Z Y, et al.In vitro and in vivo evaluation of MgF2 coated AZ31 magnesium alloy porous scaffolds for bone regeneration[J]. Colloids Surf. Biointerfaces, 2017, 149B: 330
[62] Jo J H, Kang B G, Shin K S, et al.Hydroxyapatite coating on magnesium with MgF2 interlayer for enhanced corrosion resistance and biocompatibility[J]. J. Mater. Sci. Mater. Med., 2011, 22: 2437
[63] Drynda A, Seibt J, Hassel T, et al.Biocompatibility of fluoride-coated magnesium-calcium alloys with optimized degradation kinetics in a subcutaneous mouse model[J]. J. Biomed. Mater. Res., 2013, 101A: 33
[64] Chai H W, Guo L, Wang X T, et al.In vitro and in vivo evaluations on osteogenesis and biodegradability of a β-tricalcium phosphate coated magnesium alloy[J]. J. Biomed. Mater. Res., 2012, 100A: 293
[65] Peng F, Li H, Wang D H, et al.Enhanced corrosion resistance and biocompatibility of magnesium alloy by Mg-Al-layered double hydroxide[J]. ACS Appl. Mater. Interfaces, 2016, 8: 35033
[66] Li B, Han Y, Li M.Enhanced osteoblast differentiation and osseointegration of a bio-inspired HA nanorod patterned pore-sealed MgO bilayer coating on magnesium[J]. J. Mater. Chem., 2016, 4B: 683
[67] Gu X N, Li N, Zhou W R, et al.Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg-Ca alloy[J]. Acta Biomater., 2011, 7: 1880
[68] Lin X, Tan L L, Zhang Q, et al.The in vitro degradation process and biocompatibility of a ZK60 magnesium alloy with a forsterite-containing micro-arc oxidation coating[J]. Acta Biomater., 2013, 9: 8631
[69] Yang X M, Li M, Lin X, et al.Enhanced in vitro biocompatibility/bioactivity of biodegradable Mg-Zn-Zr alloy by micro-arc oxidation coating contained Mg2SiO4[J]. Surf. Coat. Technol., 2013, 233: 65
[70] Wang D W, Cao Y, Qiu H, et al.Improved blood compatibility of Mg-1.0Zn-1.0Ca alloy by micro-arc oxidation[J]. J. Biomed. Mater. Res., 2011, 99A: 166
[71] Lu P, Cao L, Liu Y, et al.Evaluation of magnesium ions release, biocorrosion, and hemocompatibility of MAO/PLLA-modified magnesium alloy WE42[J]. J. Biomed. Mater. Res., 2011, 96B: 101
[72] Wei Z L, Tian P, Liu X Y, et al.In vitro degradation, hemolysis, and cytocompatibility of PEO/PLLA composite coating on biodegradable AZ31 alloy[J]. J. Biomed. Mater. Res., 2015, 103: 342
[73] Tian P, Xu D M, Liu X Y.Mussel-inspired functionalization of PEO/PCL composite coating on a biodegradable AZ31 magnesium alloy[J]. Colloid Surf. Biointerfaces, 2016, 141B: 327
[74] Lin X, Tan L L, Wang Q, et al.In vivo degradation and tissue compatibility of ZK60 magnesium alloy with micro-arc oxidation coating in a transcortical model[J]. Mater. Sci. Eng., 2013, C33: 3881
[75] Gao J H, Shi X Y, Yang B, et al.Fabrication and characterization of bioactive composite coatings on Mg-Zn-Ca alloy by MAO/sol-gel[J]. J. Mater. Sci. Mater. Med., 2011, 22: 1681
[76] Chen S, Guan S K, Li W, et al.In vivo degradation and bone response of a composite coating on Mg-Zn-Ca alloy prepared by microarc oxidation and electrochemical deposition[J]. J. Biomed. Mater. Res., 2012, 100B: 533
[77] Conceicao T F, Scharnagl N, Blawert C, et al.Corrosion protection of magnesium alloy AZ31 sheets by spin coating process with poly (ether imide) [PEI][J]. Corros. Sci., 2010, 52: 2066
[78] Xu L P, Yamamoto A.Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating[J]. Colloid Surf. Biointerfaces, 2012, 93B: 67
[79] Liu J, Xi T F.Enhanced anti-corrosion ability and biocompatibility of PLGA coatings on MgZnYNd alloy by BTSE-APTES pre-treatment for cardiovascular stent[J]. J. Mater. Sci. Technol., 2016, 32: 845
[80] Wong H M, Yeung K W K, Lam K O, et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants[J]. Biomaterials, 2010, 31: 2084
[81] Zeng R, Dietzel W, Witte F, et al.Progress and challenge for magnesium alloys as biomaterials[J]. Adv. Eng. Mater., 2008, 10: B3
[82] Kim S B, Jo J H, Lee S M, et al.Use of a poly (ether imide) coating to improve corrosion resistance and biocompatibility of magnesium (Mg) implant for orthopedic applications[J]. J. Biomed. Mater. Res., 2013, 101A: 1708
[83] Liu J, Liu X L, Xi T F, et al.A novel pseudo-protein-based biodegradable coating for magnesium substrates: In vitro corrosion phenomena and cytocompatibility[J]. J. Mater. Chem., 2015, 3B: 878
[84] Liu J, Wang P, Chu C C, et al.A novel biodegradable and biologically functional arginine-based poly (ester urea urethane) coating for Mg-Zn-Y-Nd alloy: Enhancement in corrosion resistance and biocompatibility[J]. J. Mater. Chem., 2017, 5B: 1787
[85] Zomorodian A, Garcia M P, Silva T M, et al.Corrosion resistance of a composite polymeric coating applied on biodegradable AZ31 magnesium alloy[J]. Acta Biomater., 2013, 9: 8860
[86] Agarwal S, Morshed M, Labour M N, et al.Enhanced corrosion protection and biocompatibility of a PLGA-silane coating on AZ31 Mg alloy for orthopaedic applications[J]. RSC Adv., 2016, 6: 113871
[87] Chen Y Q, Zhao S, Liu B, et al.Corrosion-controlling and osteo-compatible Mg ion-integrated phytic acid (Mg-PA) coating on magnesium substrate for biodegradable implants application[J]. ACS Appl. Mater. Interfaces, 2014, 6: 19531
[88] Zhao S, Chen Y Q, Liu B, et al.A dual-task design of corrosion-controlling and osteo-compatible hexamethylenediaminetetrakis- (methylene phosphonic acid) (HDTMPA) coating on magnesium for biodegradable bone implants application[J]. J. Biomed. Mater. Res., 2015, 103: 1640
[89] Liu X L, Zhen Z, Liu J, et al.Multifunctional MgF2/Polydopamine coating on Mg alloy for vascular stent application[J]. J. Mater. Sci. Technol., 2015, 31: 733
[90] Song Y, Zhang S X, Li J A, et al.Electrodeposition of Ca-P coatings on biodegradable Mg alloy: In vitro biomineralization behavior[J]. Acta Biomater., 2010, 6: 1736
[91] Jamesh M, Kumar S, Narayanan T S N S. Electrodeposition of hydroxyapatite coating on magnesium for biomedical applications[J]. J. Coat. Technol. Res., 2012, 9: 495
[92] Bakhsheshi-Rad H R, Idris M H, Abdul-Kadir M R. Synthesis and in vitro degradation evaluation of the nano-HA/MgF2 and DCPD/MgF2 composite coating on biodegradable Mg-Ca-Zn alloy[J]. Surf. Coat. Technol., 2013, 222: 79
[93] Zhao Q M, Guo X, Dang X Q, et al.Preparation and properties of composite MAO/ECD coatings on magnesium alloy[J]. Colloid Surf. Biointerfaces, 2013, 102B: 321
[94] Wang H X, Guan S K, Wang Y S, et al.In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg-Zn-Ca alloy for bone implant application[J]. Colloid Surf. Biointerfaces, 2011, 88B: 254
[95] Carlisle E M.Silicon: A requirement in bone formation independent of Vitamin D1[J]. Calcified Tissue Int., 1981, 33: 27
[96] Qiu X, Wan P, Tan L L, et al.Preliminary research on a novel bioactive silicon doped calcium phosphate coating on AZ31 magnesium alloy via electrodeposition[J]. Mater. Sci. Eng., 2014, C36: 65
[97] Li J A, Han P, Ji W P, et al.The in vitro indirect cytotoxicity test and in vivo interface bioactivity evaluation of biodegradable FHA coated Mg-Zn alloys[J]. Mater. Sci. Eng., 2011, B176: 1785
[98] Sun J D, Liu X Y, Meng L, et al.One-step electrodeposition of self-assembled colloidal particles: A novel strategy for biomedical coating[J]. Langmuir, 2014, 30: 11002
[99] Sun J D, Zhu Y, Meng L, et al.A biodegradable coating based on self-assembled hybrid nanoparticles to control the performance of magnesium[J]. Macromol Chem. Phys., 2015, 216: 1952
[100] Sun J D, Zhu Y, Meng L, et al.Controlled release and corrosion protection by self-assembled colloidal particles electrodeposited onto magnesium alloys[J]. J. Mater. Chem., 2015, 3B: 1667
[101] Sun J D, Zhu Y, Meng L, et al.Electrophoretic deposition of colloidal particles on Mg with cytocompatibility, antibacterial performance, and corrosion resistance[J]. Acta Biomater., 2016, 45: 387
[102] Zhao Y, Wu G S, Pan H B, et al.Formation and electrochemical behavior of Al and O plasma-implanted biodegradable Mg-Y-RE alloy[J]. Mater. Chem. Phys., 2012, 132: 187
[103] Zhao Y, Wu G S, Lu Q Y, et al.Improved surface corrosion resistance of WE43 magnesium alloy by dual titanium and oxygen ion implantation[J]. Thin Solid Films, 2013, 529: 407
[104] Jamesh M I, Wu G S, Zhao Y, et al.Effects of zirconium and nitrogen plasma immersion ion implantation on the electrochemical corrosion behavior of Mg-Y-RE alloy in simulated body fluid and cell culture medium[J]. Corros. Sci., 2014, 86: 239
[105] Xu R Z, Yang X B, Jiang J, et al.Effects of chromium ion implantation voltage on the corrosion resistance and cytocompatibility of dual chromium and oxygen plasma-ion-implanted biodegradable magnesium[J]. Surf. Coat. Technol., 2013, 235: 875
[106] Wu G S, Gong L, Feng K, et al.Rapid degradation of biomedical magnesium induced by zinc ion implantation[J]. Mater. Lett., 2011, 65: 661
[107] Jin W H, Wu G S, Gao A, et al.Hafnium-implanted WE43 magnesium alloy for enhanced corrosion protection and biocompatibility[J]. Surf. Coat. Technol., 2016, 306: 11
[108] Jin W H, Wu G S, Feng H Q, et al.Improvement of corrosion resistance and biocompatibility of rare-earth WE43 magnesium alloy by neodymium self-ion implantation[J]. Corros. Sci., 2015, 94: 142
[109] Wong H M, Zhao Y, Tam V, et al.In vivo stimulation of bone formation by aluminum and oxygen plasma surface-modified magnesium implants[J]. Biomaterials, 2013, 34: 9863
[110] Zhao Y, Jamesh M I, Li W K, et al.Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys[J]. Acta Biomater., 2014, 10: 544
[111] Cheng M Q, Qiao Y Q, Wang Q, et al.Dual ions implantation of zirconium and nitrogen into magnesium alloys for enhanced corrosion resistance, antimicrobial activity and biocompatibility[J]. Colloids Surf. Biointerfaces, 2016, 148B: 200
[1] 王鲁宁, 尹玉霞, 石章智, 韩倩倩. 医用可降解锌合金的生物相容性评价研究进展[J]. 金属学报, 2023, 59(3): 319-334.
[2] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[3] 钱漪, 袁广银. 可降解锌合金血管支架的研究现状、面临的挑战与对策思考[J]. 金属学报, 2021, 57(3): 272-282.
[4] 郑玉峰, 夏丹丹, 谌雨农, 刘云松, 徐钰倩, 温鹏, 田耘, 赖毓霄. 增材制造可降解金属医用植入物[J]. 金属学报, 2021, 57(11): 1499-1520.
[5] 马政, 陆喜, 高明, 谭丽丽, 杨柯. 缝隙腐蚀对Fe-30Mn-1C合金降解速率的影响[J]. 金属学报, 2018, 54(7): 1010-1018.
[6] 郑玉峰,吴远浩. 处在变革中的医用金属材料[J]. 金属学报, 2017, 53(3): 257-297.
[7] 东家慧, 谭丽丽, 杨柯. 可降解镁基金属骨缺损修复材料的研究探索[J]. 金属学报, 2017, 53(10): 1197-1206.
[8] 张小农, 左敏超, 张绍翔, 吴宏流, 王文辉, 陈文智, 倪嘉桦. 医用可降解血管支架临床研究进展[J]. 金属学报, 2017, 53(10): 1215-1226.
[9] 袁广银, 牛佳林. 可降解医用镁合金在骨修复应用中的研究进展[J]. 金属学报, 2017, 53(10): 1168-1180.
[10] 郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展[J]. 金属学报, 2017, 53(10): 1227-1237.
[11] 谭丽丽, 陈军修, 于晓明, 杨柯. 生物可降解MgYREZr合金的研究进展[J]. 金属学报, 2017, 53(10): 1207-1214.
[12] 王鲁宁, 孟瑶, 刘丽君, 董超芳, 岩雨. 可降解锌基生物材料的研究进展[J]. 金属学报, 2017, 53(10): 1317-1322.
[13] 奚廷斐, 魏利娜, 刘婧, 刘小丽, 甄珍, 郑玉峰. 镁合金全降解血管支架研究进展[J]. 金属学报, 2017, 53(10): 1153-1167.
[14] 徐文利 陆喜 谭丽丽 杨柯. 新型生物可降解Fe-30Mn-1C合金的性能研究[J]. 金属学报, 2011, 47(10): 1342-1347.
[15] 洪岩松; 杨柯; 张广道; 黄晶晶; 郝玉全; 艾红军 . 可降解镁合金的动物体内骨诱导作用[J]. 金属学报, 2008, 44(9): 1035-1041 .