Please wait a minute...
金属学报  2015, Vol. 51 Issue (7): 844-852    DOI: 10.11900/0412.1961.2014.00692
  本期目录 | 过刊浏览 |
脉冲磁场作用下矩形截面宽厚比对K4169高温合金晶粒细化的影响*
滕跃飞,李应举,冯小辉,杨院生()
EFFECT OF RECTANGLE ASPECT RATIO ON GRAIN REFINEMENT OF SUPERALLOY K4169 UNDER PULSED MAGNETIC FIELD
Yuefei TENG,Yingju LI,Xiaohui FENG,Yuansheng YANG()
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

滕跃飞,李应举,冯小辉,杨院生. 脉冲磁场作用下矩形截面宽厚比对K4169高温合金晶粒细化的影响*[J]. 金属学报, 2015, 51(7): 844-852.
Yuefei TENG, Yingju LI, Xiaohui FENG, Yuansheng YANG. EFFECT OF RECTANGLE ASPECT RATIO ON GRAIN REFINEMENT OF SUPERALLOY K4169 UNDER PULSED MAGNETIC FIELD[J]. Acta Metall Sin, 2015, 51(7): 844-852.

全文: PDF(10824 KB)   HTML
摘要: 

研究了脉冲磁场作用下K4169高温合金矩形截面试件的凝固组织以及具有不同宽厚比矩形截面试件的晶粒细化效果, 计算模拟了脉冲磁场作用下试件熔体中电磁场和流场的分布情况, 并对细化机理进行了分析. 实验结果表明, 施加脉冲磁场后, K4169高温合金矩形试件的凝固组织得到了不同程度的细化, 当试件宽厚比为1时, 施加脉冲磁场可以使凝固组织晶粒显著细化; 随着试件宽厚比增大, 脉冲磁场的晶粒细化效果减弱. 计算模拟结果表明, 脉冲磁场在熔体中产生周期性的压-拉电磁力, 导致熔体产生周期性振荡和呈环流形式的对流. 在相同磁感应强度的脉冲磁场作用下, 试件宽厚比越接近1, 试件内的电磁力和流速越大, 有利于模壁晶核游离及枝晶臂破碎, 从而使晶粒得到细化.

关键词 高温合金晶粒细化脉冲磁场宽厚比数值模拟    
Abstract

The researches on the grain refinement by applied pulsed magnetic field (PMF) during solidification have received much attention in recent years and lots of positive experimental results indicate that it is a potential method for controlling solidification process. Various grain refinement mechanisms under PMF are proposed and most of them are considered to be relevant to the convection of melt driven by the electromagnetic force. An obvious fact is that the forced convection caused by PMF is strongly limited by the shape of the melt. However, most of previous studies were focused on the cylindrical samples rather than rectangular ones, and actually the later one was widely used in industry. The aim of this work is to investigate the influence of PMF on the grain refinement of K4169 superalloy rectangular samples with various aspect ratios. Grain refinement of K4169 superalloy under PMF was experimentally investigated in the rectangular samples with the aspect ratios of 1.0, 2.0, 4.5 and 5.5 on the transverse section. In order to study the influence of aspect ratio on the forced convection, the distributions of the electromagnetic field, electromagnetic force and melt flow caused by PMF were numerically simulated by finite element software ANSYS. The experimental results show that the grains of the K4169 rectangular samples are coarse equaxied grains without PMF and the grain size slightly decreases with the increase of aspect ratio . Under the PMF with same excitation voltage and frequency, the grains are refined remarkably in the sample with the aspect ratio of 1.0. As the aspect ratio is increased, the grain refinement effect can still be observed but not such obvious. The numerical simulation results indicate that the periodic pushing-pulling electromagnetic force is induced by the PMF, which drives the melt to vibrate and flow circularly. Under the same PMF, the electromagnetic force and fluid rate decreases with the increase of aspect ratio. When the aspect ratio increases from 1.0 to 5.5, the average electromagnetic force and fluid rate in the melt is reduced to 40% and 60%, respectively. The strongest fluid flow and vibration occur in the sample with section aspect ratio 1.0 in the present experiment, which is beneficial for grain refinement due to detachment of the solidified nuclei from mould wall and the break of dendrite arms from dendrite trunks.

Key wordssuperalloy    grain refinement    pulsed magnetic field    aspect ratio    numerical simulation
    
基金资助:* 国家自然科学基金项目 51034012和国家重点基础研究发展计划项目2010CB631205资助
图1  产生脉冲磁场的激励电流单周期波形
图2  矩形截面试件(宽厚比为5.5)的三维有限元模型及网格划分
图3  不同宽厚比的K4169高温合金矩形截面试件在有无脉冲磁场作用下的凝固组织
图4  不同宽厚比的K4169矩形截面试件在有无脉冲磁场作用下的平均晶粒尺寸
图5  激励电流峰值时刻及下降期空间磁感应强度的分布
图6  激励电流峰值时刻和激励电流下降期的感应电流密度和电磁力的分布(各小图为中心横截面上相应的分布)
Position Calculated Measured
I 0.056 0.052
II 0.051 0.048
III 0.134 0.128
表1  图5a中位置I, II和III处磁感应强度Z方向分量的计算值与实测值
图7  不同宽厚比矩形试件中的最大电磁力密度与平均电磁力密度
图8  宽厚比为1.0的试件中心轴高度75 mm处的节点流速随时间的演变规律
图9  第25 s时不同截面宽厚比下脉冲磁场在熔体中产生的流动矢量图
图10  不同宽厚比矩形试件中的最大流速与平均流速
[1] Reed R C. The Superalloys Fundamentals and Applications. New York: Cambridge University Press, 2006: 247
[2] Chen R Z, Wang L B, Li J H. J Aero Mater, 2000; 20(1): 55 (陈荣章, 王罗宝, 李建华. 航空材料学报, 2000; 20(1): 55
[3] He S X, Wang J. Hot Working Technol, 2013; 42(21): 5 (何树先, 王 俊. 热加工工艺, 2013; 42(21): 5)
[4] Asai S. Sci Technol Adv Mater, 2000; 1: 191
[5] Vives C. Metall Trans, 1989; 20B: 623
[6] Zi B T, Ba Q X, Cui J Z, Xu M G. Scr Mater, 2000; 43: 377
[7] Gao Y L, Li Q S, Gong Y Y, Zhai Q J. Mater Lett, 2007; 61: 4011
[8] Wang B, Yang Y S, Zhou J, Tong W. J Mater Sci Technol, 2011; 27: 176
[9] Wu H J, Wei N, Bao Y P, Wang G X, Liu J J, Du J X. Foundry Technol, 2011; 32: 321 (吴华杰, 魏 宁, 包燕平, 王国新, 留津津, 杜建新. 铸造技术, 2011; 32: 321)
[10] Jin W Z, Li J, Li T J, Yin G M. J Vac Sci Technol Sin, 2008; 28(6): 579 (金文中, 李 军, 李廷举, 殷国茂. 真空科学与技术学报, 2008; 28(6): 579)
[11] Jin W Z, Bai F D, Li T J, Yin G M. Mater Lett, 2008; 62: 1585
[12] Jia P, Wang E G, Lu H, He J C. Acta Metall Sin, 2013; 49: 1573 (贾 鹏, 王恩刚, 鲁 辉, 赫冀成. 金属学报, 2013; 49: 1573)
[13] Ma X P, Li Y J, Yang Y S. J Mater Res, 2009; 24: 2670
[14] Li Y J, Ma X P, Yang Y S. Trans Nonferrous Met Soc China, 2011; 21: 1277
[15] Ma X P, Li Y J, Yang Y S. J Mater Res, 2009; 24: 3174
[16] Vives C. Metall Trans, 1985; 16B: 377
[17] Yu Y D, Li C X. Mater Des, 2013; 44: 17
[18] Zhang H T, Nagaumi H, Zuo Y B, Cui J Z. Mater Sci Eng, 2007; A448: 189
[19] Zhang H T, Nagaumi H, Zuo Y B, Cui J Z. Mater Sci Eng, 2007; A448: 177
[20] Ren B Z, Zhu M Y, Wang H D, Chen Y. Acta Metall Sin, 2008; 44: 507 (任兵芝, 朱苗勇, 王宏丹, 陈 永. 金属学报, 2008; 44: 507)
[21] Yu J W, Shen J, Lu B P, Fu H Z. Chin J Nonferrous Met, 2004; 14: 1494 (俞建威, 沈 军, 卢百平, 傅恒志. 中国有色金属学报, 2004; 14: 1494)
[22] Zi B T, Yao K F, Wang H, Liu W J, Cui J Z, Xu G M, Ba Q X. Rare Met Mater Eng, 2002; 31: 334 (訾炳涛, 姚可夫, 王 辉, 刘文今, 崔建忠, 许光明, 巴启先. 稀有金属材料与工程, 2002; 31: 334)
[23] Wang B, Yang Y S, Ma X P, Tong W H. Trans Nonferrous Met Soc China, 2010; 20: 283
[24] Takamichi I,Roderick I. Translated by Xian A P, Wang L W. The Physical Properties of Liquid Metals. Beijing: Science Press, 2006: 73, 204, 256 (Takamichi I,Roderick I著,冼爱平,王连文 译. 液态金属的物理性能. 北京: 科学出版社, 2006: 73, 204, 256)
[25] Li M J, Tamura T, Miwa K. Acta Mater, 2007; 55: 4635
[26] Ma X P, Li Y J, Yang Y S. J Mater Res, 2009; 24: 3174
[27] Li Y J, Tao W Z, Yang Y S. J Mater Process Technol, 2012; 212?: 903
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[4] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[5] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[6] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[7] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[8] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[9] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[10] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[11] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[12] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[13] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[14] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[15] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.